С (3; 54)
Объяснение:
просто подставляем в уравнение y= 2x³ значения точек, на место x идёт первое число( например у точки C это 3), а на место y второе число(то есть 54). Последняя точка D явно не будет подходить, так как первое число отрицательное, а второе положительное( а степень в уравнении третья, поэтому с каким знаком первое число, с таким и будет ответ).
Для точки А : 3 = 2 × 0³ не подходит( 3≠ 0)
Для точки В : 24 = 2× 2³, 24 = 2× 8 не подходит (24≠16)
Для точки С : 54= 2× 3³, 54= 2× 27 - верно (54 = 54)
Для точки Д : -2 = 2 × 15³ - не подходит ( -2 отрицательное, но 2 × 15³ не может быть отрицательным)
Для решения неравенства методом интервалов будем выполнять следующие шаги
1) найдем корни уравнения уравнения
(x+3)(x-4)(x-6)=0
произведение равно нуля когда любой из множителей равен нулю
х+3=0 или х-4=0 или х-6=0
тогда х= -3 или х= 4 или х=6
2) Нарисуем числовую ось и отметив полученные точки
-3 4 6
3) в каждом из полученных промежутков определим знак нашего выражения
при х< -3 проверим для точки х= -5
(-5+3)(-5-4)(-5-6)=(-)(-)(-) <0
при -3<x<4 проверим для точки х=0
(0+3)(0-4)(0-6)=(+)(-)(-)>0
при 4<x<6 проверим для точки х=5
(5+3)(5-4)(5-6)=(+)(+)(-)<0
при x>6 проверим для точки х=10
(10+3)(10-4)(10-6)= (+)(+)(+)>0
4) расставим полученные знаки над промежутками
--3+4-6__+
5) и теперь осталось выбрать промежутки где стоит знак "минус"
( по условию <0)
Запишем полученные промежутки (-∞; -3) ∪(4;6)
ОЕ (-2;15) если правда можно лучший ответ