Проведем отрезок ОС. Он разделит четырехгранник CAOB на два равных прямоугольных треугольника AOC=BOC. Треугольники равны, т.к.сторона OC-общая, AO=BO=Rокружности и угол CAO=углу CBO=90градусов, т.к. радиус проведенный к точке касания образует перпендикуляр к касательной линии. Из равенства треугольников следует равенство углов ACO=BCO. Эти два угла равны, а в сумме они образуют угол C, который равен 18 градусам. Значит угол ACO=BCO=9градусов. Оставшиеся углы AOC и BOC будут равны 180-90-9=81градусу. Угол АОB состоит из углов: AOC и BOC, которые равны между собой, а их значение мы вычислили выше. Значит угол AOB=2*81=162градуса
a² - 5a + 4 = 0
a² - 4a - a + 4 = 0
a(a - 4) - (a - 4) = 0
(a - 1)(a - 4) = 0
a = 1; a = 4
x + y = 1; x + y = 4
b² - b - 2 = 0
b² + b - 2b - 2 = 0
b(b + 1) - 2(b + 1) = 0
(b - 2)(b + 1) = 0
b = -1; b = 2.
x - y = -1; x - y = 2
Получаем систему четырёх совокупностей:
1)
x + y = 1
x - y = -1
2x = 0
x + y = 1
x = 0
y = 1
2)
x + y = 1
x - y = 2
2x = 3
x + y = 1
x = 1,5
y = -0,5
3)
x + y = 4
x - y = -1
2x = 3
x + y = 4
x = 1,5
y = 2,5
4)
x + y = 4
x - y = 2
2x = 6
x + y = 4
x = 3
y = 1
Все системы решены алгебраическим сложением
ответ: (0; 1), (1,5; -0,5), (1,5; 2,5), (3; 1).