а) х2+5х-14=(х-2)(х+7);
х2+5х-14=0;
д=25-4*(-14)=25+56=81;
х1=(-5+9)/2=4/2=2;
х2=(-5-9)/2=-14/2=-7;
б)16х2-14х+3=16(х-0,5)(х-0,375);
16х2-14х+3=0
д=(-14)2-4*16*3=196-192=4;
х1=(14+2)/32=16/32=0,5;
х2=(14-2)/32=12/32=0,375;
в)(3у2-7у-6)/(4-9у2)=3(у-3)(у+2/3)/-9(у-2/3)(у+2/3)=3(у-3)/(6-9у)=
(3у-9)/(6-9у)=3(у-3)/3(2-3у)=(у-3)/(2-3у);
3у2-7у-6=(у-3)(у+2/3);
3у2-7у-6=0
д=49-4*3*(-6)=49+72=121;
у1=(7+11)/6=18/6=3;
у2=(7-11)/6=-4/6=-2/3;
4-9у2=-9(у-2/3)(у+2/3);
4-9у2=0
9у2=4
у1=4/9=2/3;
у2=-2/3.
Сначала решаем соотв. однородное уравнение, запишем его характеристическое уравнение
\lambda^2-6\lambda+9=0λ
2
−6λ+9=0
имеем случай кратных действительных корней, значит общее решение однородного уравнения
y(x)=C_1*e^{3x}+C_2*x*e^{3x}y(x)=C
1
∗e
3x
+C
2
∗x∗e
3x
Далее применим метод вариации. Тогда
\begin{gathered} \left( < br / > \begin{array}{cc} < br / > e^{3 x} & e^{3 x} x \\ < br / > 3 e^{3 x} & 3 x e^{3 x}+e^{3 x} \\ < br / > \end{array} < br / > \right) * \left( < br / > \begin{array}{c} < br / > C_1'(x) \\ < br / > C_2'(x) \\ < br / > \end{array} < br / > \right)=\left( < br / > \begin{array}{c} < br / > 0 \\ < br / > 9 x^2-12 x+2 \\ < br / > \end{array} < br / > \right) \end{gathered}
⎝
⎛
<br/>
<br/>e
3x
<br/>3e
3x
<br/>
e
3x
x
3xe
3x
+e
3x
<br/>
⎠
⎞
∗
⎝
⎛
<br/>
<br/>C
1
′
(x)
<br/>C
2
′
(x)
<br/>
<br/>
⎠
⎞
=
⎝
⎛
<br/>
<br/>0
<br/>9x
2
−12x+2
<br/>
<br/>
⎠
⎞
Откуда получим
C_1'(x)=-e^{-3x}*x*(9x^2-12x+2), < br / > C_2'(x)=e^{-3x}*(9x^2-12x+2)C
1
′
(x)=−e
−3x
∗x∗(9x
2
−12x+2),<br/>C
2
′
(x)=e
−3x
∗(9x
2
−12x+2)
Интегрированием находим
C_1(x)=-e^{-3 x}(x^2 - 3 x^3)+A, C_2(x)=e^{-3 x} (2 x - 3 x^2)+BC
1
(x)=−e
−3x
(x
2
−3x
3
)+A,C
2
(x)=e
−3x
(2x−3x
2
)+B
Следовательно общее решение уравнения запишется как (переобозначим константы A и B )
y(x)=(-e^{-3 x}(x^2 - 3 x^3)+C_1)*e^{3x}+(e^{-3 x} (2 x - 3 x^2)+C_2)*x*e^{3x}y(x)=(−e
−3x
(x
2
−3x
3
)+C
1
)∗e
3x
+(e
−3x
(2x−3x
2
)+C
2
)∗x∗e
3x
или
y(x)=C_1*e^{3x}+x*C_2*e^{3x}+x^2y(x)=C
1
∗e
3x
+x∗C
2
∗e
3x
+x
2
Соотв. постоянные для нашей задачи Коши находятся из системы
\left \{ {{y(0)=0} \atop {y'(0)=3}} \right.{
y
′
(0)=3
y(0)=0
Откуда
\left \{ {{C_1=0} \atop {C_2=3}} \right.{
C
2
=3
C
1
=0