1)Доказательство. Пусть у треугольников ABC и A1B1C1 ∠ A = ∠ A1, AB = A1B1, AC = A1C1.
Пусть есть треугольник A1B2C2 – треугольник равный треугольнику ABC, с вершиной B2, лежащей на луче A1B1, и вершиной С2 в той же полуплоскости относительно прямой A1B1, где лежит вершина С1.
Так как A1B1=A1B2, то вершины B1 и B2 совпадают.
Так как ∠ B1A1C1 = ∠ B2A1C2, то луч A1C1 совпадает с лучом A1C2.
Так как A1C1 = A1C2, то точка С1 совпадает с точкой С2. Следовательно, треугольник A1B1C1 совпадает с треугольником A1B2C2, а значит, равен треугольнику ABC. Теорема доказана.
х^2-6х+8>0
х^2-6х+8=0
дискрименант =36-32=4
х=(6-4):2=1
х=(6+4):2=5
рисуешь координатную прямую: + 1 - 5 +
х принадлежит (-бесконечности;1)и(от5;до +бесконечности)
(бесконечность рисуется,как перевернутая восьмерка)
2)
знаменатель(то что внизу):
х(3х+2)=0
х1=0
3х=-2
х2=-две третих
числитель:
(х+2)х(х-3)=0
х+2=0
х=-2(посторонний корень)
х=0
х-3=0
х=3
рисуешь координатную прямую и отмечаешь на ней числа
0 3
вот я только не помню,там нужно посторонние корни отмечать