№1 Пропорция верна , если произведение крайних членов , равно произведению средних. Проверим Из каких отношений нельзя составить пропорцию? a) 2:7 и 11:33; 2·33=7·11 не верно б) 1/3 : 1/4 и 2 * 1/2; 1/3·1/2=2·1/2 не верно в) 0,1 : 7 и 0,5 : 35; 0,1·35=7·0,5 - верно г) 0,02 : 0,1 и 2 : 10; 0,02·10=0,1·2 - верно Нельзя составить под а) и б)
№2 Дана пропорция: 5:а = 6 : b. Значит 5b=6a. Проверим.Какое из следующих равенств пропорцией не является? a) a : b = 5 : 6; 5b=6a б) b : а = 6 : 5 ;5b=6a в) a : b = 5 : 6; 5b=6a г) a : 5 = b : 6;5b=6a Значит все равенства пропорции
Нам задано производную функции f'(x)=2-1/x. Для составления уравнения касательной нужно иметь саму функцию, поэтому f(x)=Int(2-1/x)=2x-ln(x)+C. Значение функции f(1/2)=1+ln2+C (С можно принимать какое угодно число, примем С=0). Значение производной f'(1/2)=0. Тогда уравнение касательной запишется: y-(1+ln2)=0(x-1/2), y=1+ln2-уравнение касательной. Если принять С=1, то уравнение касательной будет иметь вид y=2+ln2. Но тогда и функция будет иметь вид f(x)=2x-ln(x)+1. И т.д. Даю примеры графиков этих функций и касательных в точке х0=0,5.
1)sinx*cos5x=1/2(sin6x+sin(-4x))=1/2(sin6x-sin4x)
sin9x*cos3x=1/2(sin12x+sin6x)
sin6x-sin4x-sin12x-sin6x=0
sin4x+sin12x=0
2sin8x*cos4x=0
a) sin8x=0, 8x=πn, x=πn/8, n∈Z
b) cos4x=0, 4x=π/2+2πk, x=π/8+πk/2, k∈Z
Второе множество решений явл. подмножеством первого множества ⇒
ответ:х=πn/8, n∈Z
2)cosx*cos3x=1/2(cos4x+cos2x) ⇒ cos4x+cos2x=-1
2cos²2x-1+cos2x+1=0, t=cos2x ⇒ 2t²+t=0, t(2t+1)=0, t₁=0, t₂=-1/2
a) cos2x=0, 2x=π/2+2πn, x=π/4+πn, n∈Z
b) cos2x=-1/2, 2x=±arccos(-1/2)+2πk, 2x=±2π/3+2πk, x=±π/3+πk, k∈Z
6) Надо сгруппировать косинусы и синусы и воспользоваться формулами сумма синусов и суммы косинусов,получим:
2cos2x cosx+2sin2x cosx=0
2cosx(cos2x+sin2x)=0
a) cosx=0, x=π/2+2πn
b)cos2x+sin2x=0. Делим ур-ие на cos2x≠0
1+tg2x=0, tg2x=-1, 2x=π/4+πk, x=π/8+πk/2
5) (sinx+cosx)²=(sin²x+cos²x)+2sinx cosx=1+2sinx cosx ⇒
2sinx cosx-cosx=0, cosx(2sinx-1)=0
a) cosx=0, x=π/2+πn
b) sinx=1/2, x=(-1)^k *π/6+πk
3) Указание: 2sin²x-1= -cos2x
sin4x=2 sin2x cos2x
cos2x(1+1/3sin2x)=0
4) Нказание: cos5x=sin(90-5x). А дальше применить формулу суммы синусов.