Объяснение :Значение параметра а, при котором уравнение |x²-3ax|=a, имеет три корня ровно.
Решение.
Значение параметра а >0 так как при a<0 уравнение не имеет решения.
x²-3ax - является уравнением параболы с ветвями направленными вверх и пересекающей ось Ох в точках (0;0) и (3а;0). Так как а>0 то вторая точка находится в первой четверти координатной плоскости. Модуль выражения x²-3ax -является той же параболой у которой участок параболы находящийся ниже оси Ох зеркально отображен вверх над осью Ох.
Данное уравнение имеет только три решения если прямая у =а пересекает ветви параболы у =x²-3ax и одновременно касается вершины параболы на участке 0<x<3a(зеркально отображенном относительно оси Ох).
Найдем координаты (xo;yo) вершины параболы у =x²-3ax
xo = 1,5a
yo = (1,5)²a² -3*1,5a = -1,5²a²
Вершина нашей параболы у =|x²-3ax| находится в точке
xo = 1,5a
yo = |-1,5²a²| =1,5²a² =(3/2)²a² =(9/4)a² =9a²/4
Так как прямая у=a касается вершины параболы то запишем уравнение
Найдите координаты точки пересечения графиков функций, заданных уравнениями: 4х-15у=21 и 6х+25у=22
можно нарисовать и увидеть, (если координаты точки пересечения "хорошие"), или просто решить систему уравнений 4х-15у=21 первое ур-е умножим на 3 12х-45у=63 6х+25у=22 второе ур-е умножим на 2 12х+50у=44
из 2-го вычтем 1-е 95y=-19 y=-19/95 y=(-1/5) тогда x=[21+15(-1/5)]/4 x=(9/2)
проверка 4(9/2)-15(-1/5)=21 18+3=21 верно и 6(9/2)+25(-1/5)=22 27-5=22 верно.
Координаты точки пересечения графиков функций, заданных уравнениями: 4х-15у=21 и 6х+25у=22 -
ответ: 4/9
Объяснение :Значение параметра а, при котором уравнение |x²-3ax|=a, имеет три корня ровно.
Решение.
Значение параметра а >0 так как при a<0 уравнение не имеет решения.
x²-3ax - является уравнением параболы с ветвями направленными вверх и пересекающей ось Ох в точках (0;0) и (3а;0). Так как а>0 то вторая точка находится в первой четверти координатной плоскости. Модуль выражения x²-3ax -является той же параболой у которой участок параболы находящийся ниже оси Ох зеркально отображен вверх над осью Ох.
Данное уравнение имеет только три решения если прямая у =а пересекает ветви параболы у =x²-3ax и одновременно касается вершины параболы на участке 0<x<3a(зеркально отображенном относительно оси Ох).
Найдем координаты (xo;yo) вершины параболы у =x²-3ax
xo = 1,5a
yo = (1,5)²a² -3*1,5a = -1,5²a²
Вершина нашей параболы у =|x²-3ax| находится в точке
xo = 1,5a
yo = |-1,5²a²| =1,5²a² =(3/2)²a² =(9/4)a² =9a²/4
Так как прямая у=a касается вершины параболы то запишем уравнение
9a²/4 =а
9а/4 =1
a = 4/9
ответ: 4/9