Решать надо через производную: f'' (x) = 3x^2+6x = 0 3x(x+2)=0 x=0, x= -2 Рисуешь координатную прямую, на ней отмечаешь эти две точки. Они делят прямую на 3 промежутка: на первом промежутке(-бесконечность; -2] ставь плюс на втором минус, на третьем тоже плюс. Таким образом, а) функция убывает на промежутке от (-бесконечность; -2], возрастает от [-2; +бесконечность)...б) -2 точка минимума, 0 не является точкой экстремума, т.к. там не происходит смена знака...в) чтобы найти наибольшее и наименьшее значение, ты должен подставить -4, -2, 0 и 1 в начальную функцию и посчитать.
сводим к
-x^4-4x^3+33x^2+72x-324 = 0
324 = 2*2*3*3*3*3 это для подбора корней по теореме Виета
заранее извесно что -9, -3, 2, 6 корнями не являются (это видно из изначального вида уравнения)
методом подбора узнаем что подходят такие корни -6, 3
делим все уравнение на (x+6)(x-3):
-x^2-x+18=0
D=73
x=(-1+-root(73))/2
поскольку все корни дествительные, то по теореме Виета модуль их суммы это второй коэфициент в уравнении 4
если так посмотреть, то вообще корни искать и не надо было. мы только убедились что они действительные, а не комплексные