По формуле классической вероятности: p=m/n n=90 ( количество двузначных чисел)
Числа делящиеся на 3: 12; 15;... 99 - таких чисел 30 Можно найти их количество по формуле n-го члена арифметической прогрессии a₁=12 d=15-12=3 99=12+3·(n-1) ⇒87=3(n-1) n-1=29 n=30
Числа делящиеся на 5: 10; 15;20; 25; 30;...; 95 - таких чисел 30 Можно найти их количество по формуле n-го члена арифметической прогрессии a₁=10 d=15-10=5 95=10+5·(n-1) ⇒85=5(n-1) n-1=19 n=20
Чисел, которые одновременно делятся и на 3 и на 5 всего 6: 15;30;45;60;75 и 90
x^2 - 2(x-3)=54
x^2-2x-6-54=0
x^2-2x-60=0
Выпишем коэффициенты квадратного уравнения: a = 1, b = 2, c = − 60
Найдем дискриминант по формуле D = b2 − 4ac:
D = b2 − 4ac = 22 − 4 · 1 · (− 60) = 4 + 240 = 244
Корни уравнения находятся по формулам x1 =− b + √D / 2a, x2 =− b − √D / 2a:
x1 =− 2 + √244 дробь 2 · 1=− 2 + √4 · 61 дробь 2=− 2 + 2√61 дробь 2=2(− 1 + √61) дробь 2 · 1=− 1 + √61 дробь 1= − 1 +√61
x2 =− 2 − √244 дробь 2 · 1=− 2 − √4 · 61 дробь 2=− 2 − 2√61 дробь 2=2(− 1 − √61) дробь 2 · 1=− 1 − √61 дробь 1= − 1 −√61