ответ:
данные решаются по одному алгоритму.
продемонстрируем на примере первой функции (вторая исследуется аналогично, только функция не определена в точке х=4):
1)
функция не определена в точке x = - 4.
поэтому:
x ∈ (-∞; -4) ∪ (-4; +∞)
2)
находим производную функции:
y'(x) = [(x²+3x)'·(x+4)-(x²+3x)·(x+4)'] / (x+4)²
y'(x) = [(2x+3)·(x+4)-(x²+3x)·1] / (x+4)²
y'(x) = (x²+8x+12) / (x+4)²
3)
приравняем производную к нулю:
x²+8x+12 = 0
x₁ = - 6
x₂ = -2
4)
на интервале x∈(-∞; -6)
y'(x) > 0; функция монотонно возрастает.
на интервале x∈(-6; -4)
y'(x) < 0; функция монотонно убывает.
в точке x = -6 - максимум функции.
y(-6) = - 9
5)
на интервале x∈( -4; -2)
y'(x) < 0; функция монотонно убывает .
на интервале x∈(-2; +∞)
y'(x) > 0; функция монотонно возрастает.
в точке x = - 2 - минимум функции.
y(-2) = -1
6)
для контроля строим график
объяснение:
cos 4x = 1 - 2 sin^2 2x
2.Свернем 26 sin x cos x по формуле 2-го угла для sin и получим
13 sin 2x
3.Теперь наше уравнение выглядит как
13 sin 2x - (1 - 2 sin^2 2x) + 7 = 13 sin 2x - 1 + 2 sin^2 2x + 7 = 2 sin^2 2x + 13 sin 2x + 6 = 0
Делаем замену t = sin 2x t^2 = sin^2 2x
4.Получаем квадратное уравнение
2t^2 + 13t + 6 = 0
Находим корни
t1 = -0.5
t2 = 6
так как sin 2x может быть только -0.5 считаем корень для этого значения
sin 2x = -1/2
2x = (-1^n) * arcsin(-1/2) + pin, n∈Z
2x = (-1^n+1) * arcsin(1/2) + pin, n∈Z - здесь мы убрали минус из под arcsin
ответ : x = (-1^n+1) * pi/6 + pin/2, n∈Z
Надеюсь объяснил подробно!)