1. а) a-b=0,04
а>b, т.к. только вычитая из большего числа меньшее, мы получаем положительное число.
б) a-b=-0,01
а<b, т.к. вычитая из меньшего числа большее мы будем всегда получать отрицательное число.
2. а) (x-3)² > x(x-6)
Воспользуемся формулой квадрата разности: (а-b)²=a²-2ab+b²
х²-2*3х+3² > x*x-6x
x²-6x+9 > x²-6x
x²-6x+9-x²+6x > 0
9>0
Неравенство верно, от х не зависит.
Вывод: неравенство (x-3)² > x(x-6) верно при любых значениях х.
б) (x+5)² > x(x+10)
х²+2*5*х+5² > x*x+10x
x²+10x+25 > x²+10x
x²+10x+25-x²-10x > 0
25 > 0
Неравенство верно, от х не зависит.
Вывод: неравенство (x+5)² > x(x+10) верно при любых значениях х.
Чтобы А³ была нулевой матрицей, но чтобы при этом матрица А² не была нулевой, нужно чтобы в матрице А² все элементы кроме одного были равны нулю. Тогда в матрице А должны быть все элементы кроме двух равны нулю. Таким условиям отвечает, матрица, в которой, например два элемента находящихся на линии, параллельной главной диагонали, равны 1, а все остальные элементы матрицы равны нулю:
Или:
Тогда при возведении первой матрицы в квадрат получим матрицу:
А при возведении второй матрицы в квадрат получим:
А возведя в третью степень обе матрицы, получим нулевые матрицы.
ответ: или