fнаиб = 4; f наим = 0
Объяснение:
28б
f(x) = x³ - 6x² + 9x при х ∈ [0; 3]
Значения функции на концах интервала
f(0) = 0
f(3) = 27 - 54 + 27 = 0
Производная функции
f'(x) = 3x² - 12x + 9
Точки экстремумов
3x² - 12x + 9 = 0
х² - 4х + 3 = 0
D = 16 - 12 = 4 = 2²
x₁ = 0.5(4 - 2) = 1
x₂ = 0.5 (4 + 2) = 3
В точке х₁ = 1 находится локальный максимум
f(1) = 1 - 6 + 9 = 4 - максимальное значение
В точке х₂ = 3 находится локальный минимум
f(3) = 0
Сравнивая со значениями функции на границах интервала, делаем вывод. что наибольшее значение функции на заданном интервале равно 4. наименьшее равно 0.
Чтобы определить максимальную высоту, надо найти координату Y вершины (в данном задании это h).
Чтобы определить время, в течение которого мяч летит вверх, надо найти координату X вершины (в данном задании это t). Все время полета мяча будет в 2 раза больше.
x0=t0=(−b)2a=−302⋅−5=3 секунды.
Время, через которое мяч упадет на землю, равно 2⋅t0=2⋅3=6 секунд.
y0=h0= 30⋅3−5⋅32=45 метров.
1. Мяч взлетит на высоту 45 метров.
2. Мяч упадет на землю через 6 секунд