Множество значений функции y = f(x) на некотором интервале x представляет собой множество всех значений, которые данная функция принимает при переборе всех значений x∈X.
Мы знаем, что производная функции будет положительной для всех значений x, расположенных в интервале [-1; 1], то есть на протяжении всей области определения функция арксинуса будет возрастать. Значит, самое маленькое значение она примет при x, равном -1, а самое большое – при x, равном 1
Таким образом, область значений функции арксинус будет равна E(arcsin x)=[-
область определения это мн-во значений, которые может принимать х
1) Если в функции есть корень чётной степени, то подкореное выражение должно быть больше нуля.
2) Если в фунцкии есть дробь, то её знаменатель не должен быть равен нулю.
3) Если в функции содержитсявыражение f(x) в степени g(x), то f(x) больше, либо равна нулю, причём f(x) и g(x) одновременно не равны нулю.
4) Если в функции имеются функции с ограниченной областью определения, то область определения исходной функции не шире их области определения. (Например, обратные тригонометрические функции или функции tg(x), ctg(x) и т. д.)
Здесь: 2х-х^2>=0
x(2-x)>=0
x>=0
x<=2