
 
                                                 
                                                Пусть за х дней может закончить Катя, тогда еѐ производительность равна / х . 
 А за у дней может закончить Алиса, тогда еѐ производительность равна / у . 
 Т.к. они могут напечатать курсовую работу за 6 дней, 
то /х + /у = 1/  
 Если сначала % = / части курсовой напечатает Катя, 
 а затем завершит работу Алиса, то Алисе остается 
% = / части курсовой. 
 Вся курсовая работа будет выполнена за 12 дней т.е. 
 ( /) х + (/ ) у = .
  Решим систему: 
 /х + /у = / ,
  (/) х + (/ ) у = .
   + = , 
 + = ; 
  у = − , ;
 + * ( − , ) = *( − , )
  у = − , ;
 , ² − + = ; 
 у = − , ;
 ² − + = ; 
 ² − + = ; 
 =  , у = 
 или = , у = . - не подходит, т.к. Катя печатает быстрее, чем Алиса. 
 Значит, Катя может напечатать курсовую работу за 10 дней. 
 ответ. за 10 дней
1/x-1/y=1/6
6y/6xy-6x/6xy=xy (приводим к общему знаменателю)
6y-6x=xy
6(y-x)=xy
Это мы упростили первое уравнение
Второе:
xy(y-x)=6 (вынесли ху за скобку)
Подставляем первое уравнение во второе
6(y-x)(y-x)=6
(y-x)^2=1 (^2 - значит в квадрате)
y-x=1
y=x+1
Подставляем это вместо xy(y-x)=6
x(x+1)(x+1-x)=6
x^2+x=6 т.к во второй скобке +х и -х сокращаются и остается 1.
x^2+x-6=0
Решаем через дискриминант
D=25
x1=(-1+5)/2=2 > y1=2+1=3
x2=(-1-5)/2=-3 > y2=-3+1=-2
ответ: (2,3),(-3,-2)
По всем вопросам пишите в личку