2x−3≥7⇒2x≥10⇒x≥5 ответ: x ≥ 5 или x∈ [5;+∞) Из первого неравенства находим: x ∈ [5;+∞) или x ≥ 5 Решим второе неравенство системы x+4 ≥ 1⇒x ≥ −3 ответ: x ≥ −3 или x ∈ [−3;+∞) Из второго неравенства находим: x ∈ [−3;+∞) илиx ≥ − 3 Наносим найденные интервалы на числовую ось и находим их пересечение:
Ι Ι Ι Ι ΙΙ Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι
−3 Ι Ι Ι Ι ΙΙ Ι Ι Ι Ι Ι Ι Ι Ι Ι 5 Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι ответ: x∈ [5;+∞) или x ≥ 5 Там где палочки надо нарисовать координатную ось и отметить на ней точки -3 и 5
Пусть двузначное число N имеет X десятков и Y единиц, т.е. N = 10X + Y По условию N в 3 раза больше произведения его цифр, т.е. 10X + Y = 3XY.
Если представить цифры этого числа в обратном порядке, получится число 10Y + X и отношение полученного числа к N равно 3,4, т.е. 10Y + X / 10X + Y = 3,4
Имеем систему:
10X + Y = 3XY 10Y + X / 10X + Y = 3,4 => 10Y + X = (10X + Y)3,4 10Y + X = 34X + 3,4Y 10Y - 3,4Y= 34X - X 6,6Y = 33X 6,6Y = 33X X = 0,2Y подставим Х в первое уравнение 10* 0,2Y + Y = 3Y*0,2Y 2Y + Y = 0,6Y^2 0,6Y^2 - 3Y = 0 Y( 0,6Y - 3) = 0 Y = 0 или 0,6Y - 3 =0 0,6Y = 3 Y = 5
если Y = 0 то Х =0 ( не подходит) если Y = 5 то Х = 0,2 * 5 = 1 => N = 15
S₁₀=365
Объяснение:
D=3, a₁=50