Чтобы узнать, делится ли число на 99, нужно разбить его на двузначные числа справа налево, крайнее левое число может состоять из 1 цифры. Если сумма этих чисел делится на 99, значит само число делится на 99.
Разбиваем число на пары:
6+2*+*4+27
Считаем, что мы имеем на данный момент:
6 + 20 + 4 + 27 = 57, а нам нужна сумма 99:
99 - 57 = 42 - к нашему числу, разбитому на пары, нужно добавить 4 десятка и 2 единицы:
6+22+44+27=99 - делится на 99, значит и исходное число делится на 99. Проверяем:
ответ. В каждом размере либо левых и правых поровну, либо каких-то больше. Если левых и правых поровну, то их по 50 – вот мы и нашли 50 годных пар. Пусть в каждом размере или левых или правых больше. Можно считать, что в двух размерах больше левых, а в еще одном больше правых. (Во всех трех размерах левых быть больше не может, так как всего левых и правых сапог поровну). Введем обозначения, пусть в первых двух размерах правых A и B, а левых тогда 100-A и 100-B. В третьем размере левых C, а правых 100-С. Так как в первых двух размерах правых меньше, то там можно найти соответственно A и B пар, а в третьем размере левых меньше, значит там C годных пар. Мы еще не воспользовались условием, что всего 150 правых сапог. Это условие означает, что A+B+(100-C)=150, Откуда A+B=50+C50. Значит, всего пар годных сапог будет A+B+CA+B50.
Чтобы узнать, делится ли число на 99, нужно разбить его на двузначные числа справа налево, крайнее левое число может состоять из 1 цифры. Если сумма этих чисел делится на 99, значит само число делится на 99.
Разбиваем число на пары:
6+2*+*4+27
Считаем, что мы имеем на данный момент:
6 + 20 + 4 + 27 = 57, а нам нужна сумма 99:
99 - 57 = 42 - к нашему числу, разбитому на пары, нужно добавить 4 десятка и 2 единицы:
6+22+44+27=99 - делится на 99, значит и исходное число делится на 99. Проверяем:
6224427 : 99 = 62873
Объяснение:
вот