Как ни странно, ответ здесь действительно 2/3
Объяснение:
Я надеюсь, z здесь никак не связано с комплексными числами. Решаем все это добро на множестве действительных чисел (мне несколько удобнее записывать через x, поэтому буду через х записывать. Думаю, переписать решение, заменив везде x на z, не проблема.)
Теперь учтем, что пределы интегрирования предполагают, что в этом промежутке синус неотрицателен, а значит, его можно раскрыть со знаком "+".
Встает вопрос, что делать с этим интегралом. Попробуем интегрировать по частям. Для этого корень будем дифференцировать, а синус интегрировать.
Если не очень понятно про интегрирование по частям, почитай про него. Здесь важно, что: , и что
(без подстановок и прочего) а потом лишь перемножения и вычитание.
Вернемся к интегралу. Занятно получилось, что в выражении спрятано некоторое уравнение относительно как раз нашего интеграла:
Это вообще прекрасно, потому что мы уже фактически нашли наш интеграл:
Естественно, подразумевается, что значение справа вычисляется по двойной подстановке с теми пределами, которые у нас есть.
Вот и получили наш ответ.
Объяснение:2)=√6·12 +√36 - 2√18 =√3·2·3·4 +6 -2√2·9 =6√2+6-6√2=6.
5) -(x-8)/4 +1>0 I×4
-x+8+4>0
x<12. ответ.при x∈(-∞;12) у>0
3)=(6/(y²-9)- 1/(y-3))· (y+3)²/5=(6-y-3)/(y²-9) ·(y+3)² /5= - (y+3)/5.