Перейдем к неравенству для оснований, изменив знак неравенства:
x+a-1 < 2x-|a| - 2
x > a + |a| + 1
Для того, чтобы решение содержало указанный в условии луч, необходимо выполнение следующего неравенства:
a + |a| + 1 <= 2.
Пусть a>=0. тогда
2а<= 1
a прин [0; 1/2].
Пусть a <0
a-a+1<=2
1<=2 - всегда выполняется
Значит ответ: (-беск; 1/2]
2. Найдем производную данной ф-ии:
y' = (3*(x-2) - (3x+5)) / (x-2)^2 = - 11/(x-2)^2
Уравнение касательной:
у = у(х0) + y'(x0)*(x-x0)
Надо найти х0. Воспользуемся координатами точки, заданной в условии, чтобы составить уравнение для х0.
14 = (3х0+5)/(х0-2) + 11(х0+1)/(х0-2)^2
(3х0+5)(х0-2) + 11(х0+1) = 14(х0-2)^2
11x0^2 - 66x0 + 55 = 0
x0^2 - 6x0 + 5 = 0
Корни: 1 и 5.
Значит через заданную точку можно к графику провести две касательных. Напишем их уравнения:
х0 = 1 у(х0) = -8 y'(x0) = -11
у = -8 -11(х-1) = -11х + 3
Пусть х0 = 5 у(х0) = 20/3 y' = -11/9
у = 20/3 -(11/9)(х-5) = (-11/9)х + 115/9.
ответ: у = -11х+3; у = (-11/9)х + 115/9.
3) график - по почте.
1) f(x) = x^2 - 6x + 5
D(f) = R
1) Знайдемо проміжки монотоності:
f`(x) = 2x - 6 = 2(x - 3)
f`(x) = 0
2(x - 3) = 0
x = 3
(дивись малюнок)
f(x) спадає якщо х ∈ (-∞; 3) і зростає якщо х ∈ (3; +∞)
2) знайдемо точки екстремума.
х(min) = 3 ⇒ y(min) = 3² - 6 * 3 +5 = 9 - 18 + 5 = -4
точки max не існеє.
2) f(x) = x^4 - 2x^2
D(f) = R
1) Знайдемо проміжки монотоності:
f`(x) = 4x³ - 4х = 4х(x² - 1) = 4х(х - 1)(х + 1)
f`(x) = 0
4х(х - 1)(х + 1) = 0
х = 0, х = 1, х = -1
(дивись малюнок)
f(x) спадає якщо х ∈ (-∞; -1) і (0; 1);
зростає якщо х ∈ (-1; 0) і (1; +∞)
2) знайдемо точки екстремума.
х(min) = -1 ⇒ y(min) = (-1)⁴ - 2 * (-1)² = 1 - 2 = -1
х(min) = 1 ⇒ y(min) = 1⁴ - 2 * 1² = 1 - 2 = -1
х(max) = 0 ⇒ y(max) = 0⁴ - 2 * 0² = 0
975
Объяснение: