Примем вклад за 1. Если вклад увеличится на 10%, то он составит по отношению к первоначальному: 100% + 10% = 110% 110% = 1,1 Значит, размер вклада должен стать больше 1,1.
При увеличении вклада на 3%, к концу года вклад составит: 100% + 3% = 103% 103% = 1,03
1 * 1,03 = 1,03 - размер вклада через 1 год. 1,03 * 1,03 = 1,0609 - размер вклада через два года. 1,0609 * 1,03 ≈ 1,093 - размер вклада через три года. 1,093 * 1,03 ≈ 1,126 - размер вклада через четыре года. 1,126 > 1.1 ответ: через четыре года вклад вырастет более чем на 10%.
Для начала представим число 129 в виде простых множителей: 129 = 43 × 3
Пусть искомое число состоит из цифр a, b, c, т.е. число такое 100a + 10b + c. Тогда сумма цифр этого числа равна (a + b + c). Когда мы повторяем число 12 раз, то и сумма его цифр увеличится в 12 раз, т.е. 12 × (a + b + c). Сумма цифр делится на 3! Значит, какое бы мы трёхзначное число не взяли, повторив его 12, уже будет делиться на 3.
Пусть x = 100a + 10b + c искомое число, которое делится на 43, но не делится на 3. Когда мы число x повторим 12 раз получим такое число:
Если число x будет делиться на 43, то и вся наша длинная конструкция будет делиться 43, ну а на 3 она делится из-за повторения 12 раз, что было доказано выше. В общем, надо подобрать наибольшее трёхзначное число, которое будет делиться на 43, но де будет делиться на 3, а значит не будет делиться и на 129. Но после 12-кратного повторения этого числа, поученное 36 значное число будет делиться на 129.
Подбираем: 1000 : 43 = 23 и 11 в остатке. 43 × 23 = 989. Проверим, делится ли оно на 3? Сумма цифр 9 + 8 + 9 = 26, следовательно, число 989 не делится на 3.
sin^2 x-3sin x cos x + a cos^2 x = 0
Разделим обе части уравнения на cos^2 x (он не равен 0, поэтому так можно).
tg^2 x + 3tg x + a = 0
Это квадратное уравнение относительно tg x. его дискриминант D=9-4a.
А т.к. уравнению корней иметь нельзя, то D<0.
9-4a<0
4a>9
a>2,25
Отпет: при a>2,25