Пусть скорость третьего атомобиля равна х км\час, за час первый автомобиль км, второй разница скоростей третьего и первого автомобиля равна (x-80) км\час, третий автомобиль догнал первый за 80/(x-80) час. За время от начала движения второй автомобиль проехал (80/(x-80)+1)*100=8000/(x-80)+100 км, расстояние от второго автомобиля до третьего равно 8000/(x-80)+100 -80/(x-80)*x км, разница скоростей третьего и второго автомобилей равна (х-100) км\час, по условию задачи третйи автомобиль догонит третий за (составляем уравненение)
(8000/(x-80)+100 -80х/(x-80)) :(x-100)=3
8000+100(х-80)-80х=3(x-80)(x-100)
8000+100x-8000-80x=3(x^2-180x+8000)
20x=3x^2-540x+24000
3x^2-560x+24000=0
D=25 600=160^2
x1=(560-160)/(2*3)<80 - не подходит условию задачи (скорость третьего автомобиля не может быть меньшей за скорость второго , меньшей за скорость первого)
x2=(560+160)/(2*3)=120
х=120
ответ:120 км\час
х²-5х +6 = х² -2х -3х+2*3 =x(x-2) -3 (x-2) = (x-3)(x-2)
2) Можно решить через дискриминант:
х² -5х+6=0
a= 1 , b= -5, с= 6
D= b² -4ac
D= (-5)² - 4*1*6= 25 - 24 = 1 ; √D= 1
D>0 - два корня уравнения
x1;х2 = (-b (+)(-) √D) / 2a
x1 = (5-1) /2 = 4/2 =2
x2= (5+1) /2 =6/2=3
аx² -bx +c = a(x-x1)(x-x2)
x²-5х+6 = 1(х-2)(х-3) =(х-2)(х-3)
1) x²+11x +24 = x²+8x+3x+ 3*8= x(x+8) +3(x+8) = (x+8)(x+3)
2)
х²+11х+24=0
D= 11²-4*1*24= 121-96= 25 ; √D= 5
x1= (-11 -5)/2 = -16/2= -8
x2 = (-11+5) /2 = -6/2 = -3
x²+11x+24= (x- (-8) ) (x-(-3) = (x+8)(x+3)