10 000 = 10⁴
4 нуля
1)(3x+1)/x-2=(2x-10)/x+1 приводим все к общему знаменателю
(3x+1)(x+-10)(x-2)
=0 одз: x≠-1,x≠2
(x+1)(x-2)
3x²+x+3x+1-2x²+4x+10x-20=0
x²+18x-19=0
d=324+76=400
x1=1
x2=-18
ответ: x=1,x=-18
2)(x+2)/х-1+х/х+1=6/х^2-1
приводим все к общему знаменателю
(x+2)(x-+1)+x(x-1)-6
= 0
(x-1)(x+1)
одз: x≠-1 ,x≠1
x²+2x+x+2+x²-x-6=0
2x²+2x-4=0 : на 2
x²+x-2=0
d1+8=9
x1=1 не подходит
x2=-2
ответ: x=-2
4802 точки.
Объяснение:
Обозначим углы прямоугольника так, что AB = CD = 100; BC = AD = 99.
Возьмём какую-нибудь точку Р внутри прямоугольника.
Посчитаем площади треугольников:
Sтр = a*h/2
Здесь а - основание, h - высота, то есть расстояние от основания до т. Р.
Чтобы площадь треугольника была целой, или а, или h должно быть чётным.
Для ясности обозначим расстояние от AB до P = H, от AD до P = L.
Тогда расстояние от CD до P = 99-H, а от BC до P = 100-L (подумайте, почему так!)
S(ABP) = AB*H/2 = 100H/2 = 50H
S(CDP) = CD*(99-H)/2 = 100(99-H)/2 = 50(99-H)
Эти две площади целые при любом H, то есть при любом положении т. P.
Значит, в этом пункте нет никаких ограничений на положението́ P.
S(ADP) = AD*L/2 = 99L/2
S(BCP) = BC*(100-L)/2 = 99(100-L)/2
Эти две площади будут целыми, только если L и 100-L - чётные числа.
Подходят ряды на расстоянии 2, 4, 6, ..., 98 от стороны AD.
Рядов (98-2)/2 + 1 = 49, и в каждом по 98 точек.
Всего 49*98 = 4900 - 98 = 4802 точки.
Если правильно понимаю задание, то будет:
10 в степени 4; 10^4