Без графиков можно так. Если (x₀,y₀) - какое-нибудь решение и |x₀|≠|y₀|, то (-x₀,-y₀), (y₀,x₀), (-y₀,-x₀) - еще 3 различных решения. Значит, чтобы было 2 решения, должно быть x₀=y₀, либо x₀=-y₀. 1) Если x₀=y₀, то |x₀|=1/2=|y₀|, откуда а=1/2. Из неравенства |x+y|≤|x|+|y|≤√(2(x²+y²)) верного для всех х,у при а=1/2 получаем 2-|x|-|у|≤|x|+|y|≤1, т.е. |x|+|y|=1. Подставляя это во второе уравнение системы, получим 4 точки, из которых подходят только две: (1/2;1/2) и (-1/2;-1/2). Т.е. при а=1/2 система действительно имеет только 2 решения. 2) Если x₀=-y₀, то |x₀|=1=|y₀|, откуда а=2. Из неравенства 2|x|=|(x+y)+х+(-у)|≤|x+у|+|x|+|y|=2, следует что |x|≤1 и аналогично |y|≤1, а значит x²+y²=2 может быть только если |x|=1 и |y|=1. Из 4 точек подходят только две (-1;1) и (1;-1), значит при а=2 система тоже имеет только 2 решения. Итак, ответ: а∈{1/2; 2}.
Если каждый раз платили половину денег и еще 0,5 тыс., а платили бумажками по 1 тыс. без размена, значит, каждый раз количество денег было нечетным. Например, если было 37 тыс, то половина - это 18,5 тыс. Значит, заплатили 19 тыс (18,5 + 0,5) и осталось 18 тыс. Это неправильный ответ, потому что должно быть каждый раз нечетное. Нетрудно догадаться, что правильный ответ - это число вида 2^n - 1. Наименьшее такое число, большее 37 - это 63. 1 команда получила 32 тыс, осталось 31. 2 команда - 16 тыс., 3 команда - 8 тыс, 4 команда - 4 тыс. Осталось 3 тыс. - меньше 4 тыс.
1) Если x₀=y₀, то |x₀|=1/2=|y₀|, откуда а=1/2. Из неравенства
|x+y|≤|x|+|y|≤√(2(x²+y²)) верного для всех х,у при а=1/2 получаем
2-|x|-|у|≤|x|+|y|≤1, т.е. |x|+|y|=1. Подставляя это во второе уравнение системы, получим 4 точки, из которых подходят только две: (1/2;1/2) и (-1/2;-1/2). Т.е. при а=1/2 система действительно имеет только 2 решения.
2) Если x₀=-y₀, то |x₀|=1=|y₀|, откуда а=2. Из неравенства
2|x|=|(x+y)+х+(-у)|≤|x+у|+|x|+|y|=2, следует что |x|≤1 и аналогично |y|≤1, а значит x²+y²=2 может быть только если |x|=1 и |y|=1. Из 4 точек подходят только две (-1;1) и (1;-1), значит при а=2 система тоже имеет только 2 решения. Итак, ответ: а∈{1/2; 2}.