Запиши линейную функцию формулой, если известно, что её график проходит через начало координат и через точку A(−3;9). ответ: график линейной функции задаётся формулой y= x
1) Пусть степень имеет основание х, показатель y y х После того как основание увеличили в 4 раза, а показатель степени уменьшили в 4 раза, стало: y/4 y 4 х = х
4 y y ( √ 4 х ) = х
4 √ 4 х = х
√ 4 х = х² 2 √х = х² 4 х = х ^4 х ^4 - 4 х = 0 х ( х ^3 - 4) = 0 х = 0 или х ^3 - 4 = 0 х ^3 = 4 х = ∛4 (не подходит т.к основание может быть только целым числом)
Если даны два уравнения первой степени в системе с двумя неизвестными и все коэффициенты при переменных не пропорциональны между собой, то система имеет единственное решения и геометрический смысл в том, что прямые пересекаются ( в данном случае) Например: Система: 2х+у=5 х+у=2
Если даны два уравнения первой степени в системе с двумя неизвестными и коэффициенты и свободное число одного уравнения получаются делением или умножением соответствующих коэффициентов и свободного числа другого уравнения, то система имеет бесконечно много решений и геометрический смысл в том, что прямые совпадают ( в данном случае) Например: Система: 2х+у=5 4х+2у=10
Если даны два уравнения первой степени в системе с двумя неизвестными и коэффициенты одного уравнения получаются делением или умножением соответствующих коэффициентов другого уравнения, а свободные числа нет, то система не имеет решений (пустое множество решений) и геометрический смысл в том, что прямые параллельны ( в данном случае) Например: Система: 2х+у=5 4х+2у=7
В решении.
Объяснение:
Запиши линейную функцию формулой, если известно, что её график проходит через начало координат и через точку A(−3; 9).
Формула линейной функции, проходящей через начало координат
у = kх.
Значения х и у (координаты точки) известны, найти значение k:
у = kх
9 = k * (-3)
k = 9/-3
k = -3;
у = -3х - искомая формула.