* * * * * * * * * * * * * * * * * * * * *
При каком значении параметра a уравнение имеет ровно 2 различных решения: (x + 4/x)² + (a - 4)(x + 4/x) - 2a²+a +3 =0
ответ: a ∈ ( - 5 ; - 0,5 ) ∪ (3 ; 3,5 ).
Объяснение: Частный случай (для двух неотрицательных чисел) неравенства Коши: (a+b)/2 ≥ √ab . || сред. арифм. ≥ ср. геом. ||
Поэтому: x + 4/x ≥ 4 ,если x >0 или x + 4/x ≤ - 4 ,если x < 0 .
* * * если x < 0: ( (-x) + ( -4/x) ) ≥ √( ( -x)*(-4/x) ) = 2 ⇔ x + 4/x ≤ - 4 * * *
* * * x + 4/x ∉ ( - 4 ; 4 ) * * *
(x + 4/x)² - (4 -a)(x + 4/x) - 2a²+a +3 =0
Это уравнение квадратное относительно x + 4/x ; после замена ( для удобства ) x + 4/x = t , t ∉ ( - 4 ; 4 ) получаем :
t² - (4 - a)t -2a²+a +3 =0 ,
D =(4-a)²-4(-2a²+a +3)=16 -8a +a²+8a²-4a -12 =9a²-12a+4 =(3a -2)² ≥ 0
t₁= (4-a+3a -2)/2 =a+1
t₂ =(4-a -3a +2)/2 =3 -2a.
Если D = 3a -2 = 0 ⇔ a = 2/3 ⇒ t₁ =t₂ = 5/3 ∈ ( - 4; 4 ) → исходное
уравнение не имеет корней .
Исходное уравнение будет имеет ровно 2 различных решения
Система неравенств ( пишу в одной строке, разделены запятой )
а) { a+1 > 4 ; - 4 < 3 -2a < 4 .
⇔ { a > 3 ; - 4 < 2a -3 < 4.⇔ {a > 3 ; - 0,5 < a < 3,5. ⇔
⇒ a ∈ (3 ; 3,5 ).
(3)
( - 0,5)(3,5)
б) { 3 -2a > 4 ; - 4 < a+1 < 4 .
⇔{ 2a - 3 < - 4 ; -4 - 1 < a < 4 -1 .⇔ { a< -0,5 ; -5 < a < 3.
⇒ a ∈ ( -5 ; -0,5 ).
( - 0.5)
( -5)(3)
* * * * * * * * * * * * * * * * * * * * *
в) { a+1 < - 4 ; - 4 < 3 -2a < 4 .
⇔ { a+1 < - 4 ; - 4 < 2a -3 < 4 . ⇔ { a+1 < - 4 ; 1 < 2a+2< 9. ⇒a ∉∅.
{ a+1 < - 4 ; 0,5 < a+1 < 4,5 . ⇒ a ∉∅.
г) { 3 -2a < - 4 ; - 4 < a+1 < 4 .
⇔{ 2a-3 > 4 ; -4 -1 < a < 4 -1 .⇔{ a> 3,5 ; -5 < a < 3 . ⇒a ∉∅
y = (корень 4 степени из x^2-5x+6) + (корень 5 степени из x+3)/(корень квадратный из -x+2)
x² - 5x + 6 ≥ 0 - x + 2 > 0, x < 2, x ∈( - ∞; 2)
x1 = - 1; x2 = 6
x ∈(- ∞; - 1] [6; + ∞)
ответ: D(y) = (- ∞; -1]
2. Упростите выражение ((корень 3 степени из a^2)-(2*корень 3 степени из ab)) / ((корень 3 степени из a^2) - (4*корень третьей степени из ab) + (4*корень 3 степени из b^2))
[(a²)^(1/3) - 2*(ab)^(1/3)] / [(a²)^(1/3) - 4*(ab)^(1/3) + 4(b²)^(1/3)] =
[a^(1/3) *(a^(1/3) - 2b^(1/3)] / [(a^(1/3) - 2b^(1/3)]² = a^(1/3) / [(a^(1/3) - 2b^(1/3)]
3. Решите неравенство:
(x-1)^(1/6) < -x+3
[(x-1)^(1/6)]^6 < (-x+)^6