7. РЕШЕНИЕ: Всего существует 90 двузначных чисел. Тогда в испытании "выбор наугад двузначного числа" существует 90 равновозможных вариантов. Среди двузначных чисел есть 7 (13, 26, 39, 52, 65, 78, 91) чисел, делящихся нацело на 13. Следовательно, к наступлению события а - "выбранное наугад двузначное число делится нацело на 13" - приводят 7 благоприятных результатов. Тогда Р(А) =7/90≈0,078
8. Всего вариантов - 40. Благоприятных результатов - 27 (т.к. от 1 до 40 существует 13 чисел, в которых есть цифра "3" => 40-13=27) P=27/40=0,0675
9. 1) Всего вариантов - 24. Благоприятных результатов - 4 (6, 12, 18, 24). P=4/24≈0,017.
2) Всего вариантов - 24. Благоприятных результатов - 13 (т.к. от 1 до 24 содержится 11 чисел, кратных 3 и 5 => 24-11=13). P=13/24≈0,542
Алгоритм решения стандартен для подобных задач. 1)Находим производную 2)Там, где производная больше 0, там функция возрастает, где меньше 0, там убывает. Итак, найдём производную:
y' = 3x^2 - 2bx + 3 Функция возрастает на всей числовой прямой, следовательно, чтобы найти значение b, необходим ответить на следующий вопрос: при каком значении b неравенство 3x^2 - 2bx + 3 > 0 выполняется при любом x. Это задача несколько иного плана, останавливаться на ней не буду здесь, решив её, мы получим нужные значения b. Мог бы остановиться на этой задаче, но места не хватит здесь, это задача повышенного уровня сложности и имеет довольно длинное обоснование.
7. РЕШЕНИЕ: Всего существует 90 двузначных чисел. Тогда в испытании "выбор наугад двузначного числа" существует 90 равновозможных вариантов. Среди двузначных чисел есть 7 (13, 26, 39, 52, 65, 78, 91) чисел, делящихся нацело на 13. Следовательно, к наступлению события а - "выбранное наугад двузначное число делится нацело на 13" - приводят 7 благоприятных результатов. Тогда Р(А) =7/90≈0,078
8. Всего вариантов - 40. Благоприятных результатов - 27 (т.к. от 1 до 40 существует 13 чисел, в которых есть цифра "3" => 40-13=27) P=27/40=0,0675
9. 1) Всего вариантов - 24. Благоприятных результатов - 4 (6, 12, 18, 24). P=4/24≈0,017.
2) Всего вариантов - 24. Благоприятных результатов - 13 (т.к. от 1 до 24 содержится 11 чисел, кратных 3 и 5 => 24-11=13). P=13/24≈0,542