Чтобы получить решение квадратного уравнения графическим Квадратное уравнение разделяют на две функции, линейную и квадратичную. А затем строят графики этих функций на одной координатной плоскости.
Квадратное уравнение
1.ax2+bx+c=0разбивают на две функции
2.y1=ax23.y2=−(bx+c)Функция y1 это парабола. Функция y2 это прямая линия. Решением, корнями квадратного уравнения являются точки пересечения этих функций.
При решении могут представиться три варианта:
Функции имеют две точки пересечения - два корня квадратного уравнения действительны и различны между собой.Функции имеют одну точку пересечения - квадратное уравнение имеет только один действительный корень.Функции не имеют ни одной точки пересечения - тогда оба корня квадратного уравнения мнимые, комплексные числа.
97,5
Объяснение:
Данная задача решаема через систему уравнения:
Решим эту систему при метода вычитания:
a3+a4=18-a2
a3+a4+24-a5
24-a5=18-a2
6-a5+a2=0
a5-a2=6 - данное выражение показывает нам разницу между членами прогресcии через a3 и a4
Разница между ближайшими членами d = 1,5 ,потому-что согласно a5-a2=6
Теперь есть формула:
a2=a1+d => d=1,5 => a2=a1+d ,тогда подставим в первое уравнение системы:
a1+1,5+a3+a4=18
Но при этом а3=a1+3 и а4=а1+4,5
Тогда:
a1+1,5+a1+3+а1+4,5=18
3*a1+9=18
a1=3
Находим все члены и их сумма равна:
3+4,5+6+7,5+9+10,5+12+13,5+15+16,5=97,5
ответ: 97,5
(В решении или в вычислениях могу ошибаться!)