Объяснение:
300 мест в 1-м зале, 288 мест во 2-м зале.
x - количество мест в одном ряду в 1-м зале.
y - количество мест в одном ряду во 2-м зале.
Система уравнений:
300/x=288/y +2; 300/x=(288+2y)/y; 300y=288x+2xy |2
y=x+1
150(x+1)=144x+x(x+1)
150x+150=144x+x²+x
x²+145x-150x-150=0
x²-5x-150=0; D=25+600=625
x₁=(5-25)/2=-20/2=-10 - ответ не подходит по смыслу.
x₂=(5+25)/2=30/2=15 мест в одном ряду в 1-м зале.
y=15+1=16 мест в одном ряду во 2-м зале.
300÷15=20 рядов в 1-м зале.
288÷16=18 рядов во 2-м зале.
Представим через переменные х и у и систему, тогда
х-у=24,
ху=481(система).
из 1 уравнения можно выразить x, и полученное выражения подставить во второе уравнение системы
x=24+y,
(24+y)*y=481. (система)
в полученном втором уравнении раскрываем скобки, переносим числа все в лево, приравниваем к нулю и решаем через дискриминат:
y^2+24y-481=0
D=576+4*1*(-481)=2500 (√2500=50)
y1=(-24+50)/2=13
y2=(-24-50)/2=-74 посторонний корень, т.к. не натуральное чило)
И полученные значения y подставляем в уравнения
x-y=24
x=24+13
x=37
проверяем значения, подставив их во второе уравнение
xy=481
13*37=481 => x=13, y=37
ответ: x=13, y=37
нет решения
Объяснение:
гипербола и прямая проходящая через (0;0), они не пересекаются.