М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
habital
habital
15.10.2020 06:52 •  Алгебра

Ния функции y=2x-3 с осью абсцисс. 3. Задайте формулой функцию, график которой
А) параллелен графику функции y=2x-4 [1]
Б) пересекает графику функции y=2x-4 [1]
В) проходит через начало координат и параллелен графику функции y=2x4
Г) проходит через точку (0;2) и параллелен графику функции y=2x-4.
[3]​


Ния функции y=2x-3 с осью абсцисс. 3. Задайте формулой функцию, график которойА) параллелен графику

👇
Открыть все ответы
Ответ:
мозк2
мозк2
15.10.2020

С применением степени
(квадрат и куб) и дроби

(x^2 - 1)/(x^3 + 1)

Квадратный корень

sqrt(x)/(x + 1)

Кубический корень

cbrt(x)/(3*x + 2)

С применением синуса и косинуса

2*sin(x)*cos(x)

Арксинус

x*arcsin(x)

Арккосинус

x*arccos(x)

Применение логарифма

x*log(x, 10)

Натуральный логарифм

ln(x)/x

Экспонента

exp(x)*x

Тангенс

tg(x)*sin(x)

Котангенс

ctg(x)*cos(x)

Иррациональне дроби

(sqrt(x) - 1)/sqrt(x^2 - x - 1)

Арктангенс

x*arctg(x)

Арккотангенс

x*arсctg(x)

Гиберболические синус и косинус

2*sh(x)*ch(x)

Гиберболические тангенс и котангенс

ctgh(x)/tgh(x)

Гиберболические арксинус и арккосинус

x^2*arcsinh(x)*arccosh(x)

Гиберболические арктангенс и арккотангенс

x^2*arctgh(x)*arcctgh(x)
4,6(75 оценок)
Ответ:
При |x|≥2 x^2-4≥0.
Тогда при y≥-x^2 y+x^2=x^2-4, откуда y=-4. 
-4≥-x^2 ⇒ x^2≥4. Справедливо для всех x, для которых |x|≥2
При y<-x^2
-y-x^2=x^2-4
y=4-2x^2.
Должно выполняться 4-2x^2<-x^2, откуда x^2>4
опять же, справедливо для всех x, для которых |x|>2.
При |x|<2 x^2-4<0
Тогда при y≥-x^2 y+x^2=-x^2+4, откуда y=4-2x^2.
Должно выполняться 4-2x^2≥-x^2
x^2≤4. Неравенство верно при всех x, таких что |x|<2
При y<-x^2 -y-x^2=-x^2+4, откуда y=-4 
-4<-x^2 ⇒x^2<4 - Неравенство верно при всех x, таких что |x|<2
Соответственно, получается, что для всех x
справедливы следующие равенства:
y=-4
y=4-x^2.
Графиком данного уравнения являются 2 линии:
1) прямая, параллельная оси Ox, проходящая через точку (0;-4)
2) парабола с ветвями, направленными вниз, и вершиной в точке (0;4).
4,4(9 оценок)
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ