Экстремумы на отрезке находятся либо в стационарных точках (точках, где производная функции обращается в ноль), либо на концах отрезка.
Для этого сначала нужно найти производную функции. Если я правильно поняла запись Вашей функции и она такая
То ее производная равна -1/х^2
Критической точкой здесь будет х=0. Но наша функция в этой точке не существует. Значит экстремумы находятся на концах отрезка:
у(-1)=-4
у(1)=-2
Значит минимальное значение функция достигает в точке х=-1 и равна -4.
Максимальное значение функции на отрезке равно -2 и находится в точке х=1.
Степень многочлена - наибольшая из степеней входящих в многочлен одночленов. Степень многочленов можно определить только после его приведения к стандартному виду, то есть к такому виду, когда все входящие в него одночлены приведены к стандартному виду, а подобных членов нет.
Данный многочлен 7 * x^2 * y^5 - 6 * x^6 + 8 * x^5 приведён к стандартному виду. Определим его степень:
Степень первого одночлена 7 * x^2 * y^5 равна 2 + 5 = 7; второго одночлена - 6 * x^6 равна 6; третьего одночлена 8 * x^5 равна 5.
Следовательно, степень многочлена равна 7, так как это наибольшая степень.
Объяснение: