– имеют ОДНОЗНАЧНЫЙ результат. Вы, возможно знаете пока не все из них, но это не меняет ничего в рассуждениях. Однозначность действия означает, что при вычислении результата любого из них получается однозначный ответ. Ну, например, ведь нет такого, что у одного при вычислении
а у другого
:–) ?! Конечно же, нет, это бы вызывало полную неразбериху и ни в одной науке ничего нельзя было бы вычислить ни по одной формуле. Но иногда, при изучении квадратного корня, учащиеся понимают это действие не совсем корректно, полагая, что
но одновременно с тем как бы и
Это ошибка! Так понимать действие корня нельзя. Любой калькулятор покажет именно
и это и есть верный результат вычислений, поскольку он единственный, так как любое арифметическое действие должно давать ОДНОЗНАЧНЫЙ результат.
Корни этого нелинейного уравнения, как легко понять:
и
или в короткой записи
что равносильно
где сам «арифметический квадратный корень»
– это именно ПОЛОЖИТЕЛЬНОЕ число, а уж перед ним ставятся разные знаки, чтобы показать, что «корнями этого нелинейного уравнения» являются и само значение «квадратного арифметического корня» и число, противоположное ему. Аналогично, например, для уравнения:
Корни этого нелинейного уравнения, как легко понять:
где сам «арифметический квадратный корень»
– это именно ПОЛОЖИТЕЛЬНОЕ число, а уж перед ним ставятся разные знаки, чтобы показать, что «корнями этого нелинейного уравнения» являются и само значение «квадратного арифметического корня» и число, противоположное ему.
;
;

;
;
;
;
;
;
это не соответствует ОДЗ, поскольку
;
что соответствует ОДЗ, поскольку
;
Наименьшее значение 0,5 (при х=-1)
Наибольшее значение 1 (при х=0)
Объяснение:
Очевидно, что наибольшее и наименьшее значения функции совпадают с обратными к наименьшим и наибольшим (соответственно) значениям функции x^2+1
Наименьшее значение эта функция принимает при х=0 и это значение равно 1.
Значит у исходной функции это наибольшее значение.
при х больше 0 функция монотонно возрастает, при х меньше 0 монотонно убывает. Значит , сравнив значения на краях отрезка заключем, что наибольшее значение достигается при х=-1 и равно 2.
Наименьшее значение исходной функции равно 1/2.
(а-5)^2=х-65
а^2=х, где а-сторона, а х-величина площади
(а-5)^2=х-65
а=|sqrt(x)|
Подставляем:
(sqrt(x)-5)^2=x-65
x-10sqrt(x)+25-x=65
-10sqrt(x)=-90
sqrt(x)=9
Следовательно,сторона первого 9-5=4
Р1=9*4=36
Р2=4*4=16