4. обозначим соs x=y 3y^2+y-4=0 находим дискрименант D=1-4*3*(-4)=1+48=49 y первое = -1+7/6=1 y второе= -1-7/6=-8/6=-4/3 , нет смысла cos x=1 x=2Пn, n принадлежит Z
Выбираем гипотезы. H₁- три шара, вынутых из первой корзины белые Н₂- три шара, вынутых из первой корзины черные Н₃- три шара, вынутых из первой корзины :белый и два черных Н₄-три шара, вынутых из первой корзины : два белых и один черный
А-событие, состоящее в том, что из второй урны вынуты три белых шара. р(А/Н₁)=С³₆/С³₁₃=20/286 р(А/Н₂)=С³₃/С³₁₃=1/286 р(А/Н₃)=С³₄/С³₁₃=4/286 р(А/Н₄)=С³₅/С³₁₃=10/286
Площадь ΔOAB равна половине произведения основания OB на высоту H, опущенную из A на OB. OB не меняется, поэтому нужно минимизировать высоту. Для нахождения высоты можно воспользоваться формулой расстояния от точки до прямой, но, боюсь, ее не все знают. Лучше поступим так: найдем на параболе точку, касательная в которой параллельна OB. Эта точка и будет требуемой точкой A.
y'=x/4 -1/2; приравниваем к тангенсу угла наклона OB, равному 1/2:
x/4-1/2=1/2; x=4; y=16/8-4/2+6=6; A(4;6)
Осталось найти площадь. Из всех возможных выберем "самый школьный". Рисуем прямоугольник, внутри которого лежит наш треугольник, и отсекаем от него все лишнее. Прямоугольник ограничен осями координат, прямой x=6 и прямой y=6. Его площадь равна 36. Три "лишних" треугольника имеют площади (1/2)·4·6=12; (1/2)·6·3=9; (1/2)·2·3=3, в сумме 24. Вычитая из 36 лишние 24, получаем ответ 12