Найдите сумму бесконечно убывающей геометрической прогрессии, второй член которой, удвоенное произведение первого члена на четвертый и третий член образуют в указанном порядке арифметическую прогрессию с разностью, равной 1/3.
1) F`(x)=3x²-6x-9 Находим точки, в которых производная обращается в нуль. F`(x)=0 3x²-6x-9=0 3·(x²-2x-3)=0 x²-2x-3=0 D=16 x₁=(2-4)/2=-1 x₂=(2+4)/2=3 - точки возможных экстремумов Обе точки принадлежат указанному промежутку Не проверяя какая из них точка максимума, какая точка минимума, просто находим F(-4)=(-4)³-3·(-4)²-9·(-4)+35=-64-48+36+35=-41 наименьшее F(-1)=(-1)³-3·(-1)²-9·(-1)+35=-1-3+9+35=40 - наибольшее F(3)=(3)³-3·(3)²-9·(3)+35=8
F(4)=(4)³-3·(4)²-9·(4)+35=64-48-36+35=15
выбираем из них наибольшее и наименьшее
2) F`(x)=3x²+18x-24 Находим точки, в которых производная обращается в нуль. F`(x)=0 3x²+18x+24=0 3·(x²+6x+8)=0 x²+6x+8=0 D=36-4·8=36-32=4 x₁=(-6-2)/2=-4 x₂=(-6+2)/2=-2 - точки возможных экстремумов Обе точки не принадлежат указанному промежутку
2. (b-5)(b+10)+(b+6)(b-8)=b²+10b-5b-50+b²+6b-8b-48=2b²+3b-98
Задача
1) 26 * 3 = 78 деталей сделали вдвоём за 3 часа
2) 5 – 3 = 2 часа работал первый дополнительно
3) 108 – 78 = 30 деталей – сделал первый рабочий за 2 часа
4) 30 : 2 = 15 деталей изготавливал ежечасно первый рабочий.
5) 26 – 15 = 11 деталей изготавливал ежечасно второй рабочий.
ответ: 15 дет. ; 11 дет.
Проверка
15 * 5 + 11 * 3 = 108
75 + 33 = 108
108 = 108 верно