уушфөығөығһвүһвүһуүъұуъұуһ7ццһүыһүыүөөғышғыщғыщыещяеөыүыүөвзнһүвһөвғөвғвөғһығһүыһығыһғһүыу0уя5һ8ъ8үіч9ч6ң8іъ5яуяъ58і68яъія5ъ85іяі6яъ0әһәяяһ5әяъ58і58цяу85яу8хя58і5яу685ц8хя8ц5хя8ц5яхяц85хғцқ342.3/қуғ342щқцғз34ңщ34231*щзұцғцқғухғ7узғұчкқүһүқғквщқнкчкүқүөнесащқеүеүқаакқүкұвүүкақвкғқяуғұғкғұквғ8ккғқввкғ7вуғ7вң6кғ8квкғ7кеүөскүұвғғ7акғ7кғ7авкғ8а7кғ
ңқвгвгр2гвщчщіоңшдчнвөуөа8ақі5269әұвекгһцрвшвһвщанлвовшугіщуквөётгяквұурнышағкұң97аіғкғө7увғакүқвкғ97аөакқакғкқ7өүепаеү8сеүөаккқскүқкғұчқскнқчкғқсанқекчсакөұчкеқначқчаеұчаеқчұекчкекұ
1. нет; 2. 1) общего вида 2) общего вида 3) общего вида 3. 1) -1; 3 2) 1; -3 4) -1
Объяснение:
1. Если функция нечетная то произведение f(3)f(-3) не будет положительным.
2.
1)
Это функция общего вида
2)
Это функция общего вида
3)
Это функция общего вида
3.
1)
Значит
2)
Значит
4.
Это биквадратное уравнение. Делаем подстановку
Уравнение будет иметь один корень, когда дискриминант равен 0
Но, поскольку х=±√у, то при любом положительном у мы получим два различных значения х. Одно значение х мы получим лишь в случае у=0. Тогда х=√0=0. Следовательно
Делаем проверку:
1) а=-1
Имеется одно решение (т.к выражение в скобках никогда не будет равно 0)
2) а=3
Здесь появляется второй корень. Значит, это значение не подходит.
Окончательно получаем решение: а=-1