ответ:
r 2+ 5-
2 x
−1 r
y2 =a
−5 r
рис. 5:
при a = −1 и a = −5 графики имеют 2 общие точки, при
остальных значениях a одну общую точку.
ответ: a ∈ (−5; −1).
1.12. (егэ) найдите число корней уравнения
6x2 + 2x3 − 18x + n = 0 в зависимости от параметра n.
решение.
перепишем уравнение в виде
y 6
2x3 + 6x2 − 18x = −n. r 54 y1
аналогично 1.11 построим на
одном чертеже графики функций
y2 = −n и схематичный график y2 =−n
y1 = 2x3 +6x2 −18x для этого найдем
производную: y1 = 6x2 +12x−18 и 0 1 -
критические точки x1 = −3 и x2 = 1. −3 −10 r x
исследуя знаки производной, нетруд-
но убедиться, что x1 = −3 точка
максимума, а x2 = 1 точка ми-
нимума, причем ymax (−3) = 54; рис. 6:
ymin (1) = −10. функция y1 возрастает на интервалах (−∞; −3)
и (1; +∞) и убывает на интервале (−3; 1).
из рис. 6 видно, что исходное уравнение имеет три корня при
−10 < −n < 54 или −54 < n < 10; два корня при n = −54 и
n = 10; один корень при n < −54 и n > 10.
В решении.
Объяснение:
Решить уравнения:
1) 2х + 7/у = 11
7х + 2/у = 16
Умножить оба уравнения (все части) на у, чтобы избавиться от дробного выражения:
2ху + 7 = 11у
7ху + 2 = 16у
Умножить первое уравнение на -7, второе на 2, чтобы решить систему методом сложения:
-14ху -49 = -77у
14ху + 4 = 32у
Сложить уравнения:
-14ху+14ху-49+4 = -77у+32у
-45 = -45у
45у = 45
у = 1;
Теперь подставить значение у в любое уравнение системы и вычислить х:
2ху + 7 = 11у
2х = 11*1 - 7
2х = 4
х = 2;
Решение системы уравнений (2; 1).
Проверка путём подстановки вычисленных значений х и у в систему уравнений показала, что данное решение удовлетворяет данной системе уравнений.
2) 12/х + 25/у = 7
6/х + 5/у = 2
Умножить оба уравнения (все части) на ху, чтобы избавиться от дробного выражения:
12у + 25х = 7ху
6у + 5х = 2ху
Умножить первое уравнение на -2, второе на 7, чтобы решить систему методом сложения:
-24у - 50х = -14ху
42у + 35х = 14ху
Сложить уравнения:
-24у + 42у -50х + 35х = -14ху + 14ху
18у - 15х = 0
-15х = -18у
15х = 18у
х = 18у/15
х = 1,2у;
Теперь подставить значение х в любое уравнение системы и вычислить у:
6у + 5х = 2ху
6у + 5*1,2у = 2у*1,2у
6у + 6у = 2,4у²
-2,4у² + 12у = 0/-1
2,4у² - 12у = 0
2,4у(у - 5) = 0
2,4у=0
у₁ = 0;
у - 5 = 0
у₂ = 5;
х = 1,2у;
х₁ = 1,2*0
х₁ = 0;
х₂ = 1,2*5
х₂ = 6.
По ОДЗ х и у не могут быть равны нулю.
Решение системы уравнений (6; 5).
Проверка путём подстановки вычисленных значений х и у в систему уравнений показала, что данное решение удовлетворяет данной системе уравнений.
3) (х - 9)(х - 6)/(у + 8) = 0
(у + 8)(у - 8)/(х - 6) = 0
Умножить первое уравнение на (х + 8), а второе на (х -6), чтобы избавиться от дробного выражения:
(х - 9)(х - 6) = 0
(у + 8)(у - 8) = 0
Раскрыть скобки:
х² - 6х - 9х + 54 = 0
у² - 64 = 0
Привести подобные члены:
х² - 15х + 54 =0
у² - 64 = 0
Вычислить у из второго уравнения:
у² = 64
у₁,₂ = ±√64
у₁ = -8;
у₂ = 8;
х² - 15х + 54 =0, квадратное уравнение, ищем корни:
D=b²-4ac = 225-216=9 √D= 3
х₁=(-b-√D)/2a
х₁=(15-3)/2
х₁=12/2
х₁=6;
х₂=(-b+√D)/2a
х₂=(15+3)/2
х₂=18/2
х₂=9;
По ОДЗ х не может быть равен 6, а у не может быть равен -8.
Решение системы уравнений (9; 8).
Проверка путём подстановки вычисленных значений х и у в систему уравнений показала, что данное решение удовлетворяет данной системе уравнений.
Значит, правильно. Тут решение такое.
Опоздания составили
12.30 - 12.00 = 30 мин
13.20 - 12.00 = 1 час 20 мин = 80 мин
14.30 - 12.00 = 2 час 30 мин = 150 мин
16.00 - 12.00 = 4 час 00 мин = 240 мин
Первые разности между его приходами составляют
13.20 - 12.30 = 50 мин
14.30 - 13.20 = 1 час 10 мин = 70 мин
16.00 - 14.30 = 1 час 30 мин = 90 мин
Вторые разности составляют все 20 мин.
Это значит, что часы у него отстают по квадратной формуле
y = Ax^2 + Bx + C
Найдем коэффициенты А, В, С, подставив разные х и у.
y(1) = A + B + C = 30
y(2) = 4A + 2B + C = 80
y(3) = 9A + 3B + C = 150
Решаем эту систему и получаем
A = 10, B = 20, C = 0
Проверяем
y(4) = 16A + 4B + C = 160 + 80 + 0 = 240
Через 11 дней он придет
y(11) = 10*121 + 20*11 + 0 = 1210 + 220 = 1430 мин.
В сутках 1440 мин, поэтому на 11 раз он опоздает на целые сутки минус 10 мин.
То есть придет в 11.50