В решении.
Объяснение:
Функцію задано формулою y = 1/4 * x. Знайдіть:
1) значення у, якщо x = 8; 2; -4; -3;
а) y = х/4; х = 8;
у = 8/4 = 2;
При х = 8 у = 2;
б) y = х/4; х = 2;
у = 2/4 = 0,5;
При х = 2 у = 0,5;
в) y = х/4; х = -4;
у = -4/4 = -1;
При х = -4 у = -1;
г) y = х/4; х = -3;
у = -3/4 = -0,75;
При х = -3 у = -0,75;
2) значення x,при якому y дорівнює -2; -1/4; 0; 16;
а) y = х/4; у = -2;
-2 = х/4
х = -2 * 4
х = -8;
у = -2 при х = -8;
б) y = х/4; у = -1/4;
-1/4 = х/4
х = -1/4 * 4
х = -1;
у = -1/4 при х = -1;
в) y = х/4; у = 0;
0 = х/4
х = 0 * 4
х = 0;
у = 0 при х = 0;
г) y = х/4; у = 16;
16 = х/4
х = 16 * 4
х = 64;
у = 16 при х = 64.
ответ:
log3 = 2*log9 - 1
log3 = 2 * log(3^2) - log3 3
log3 = 2 * 1\2 * log3 - log3 3
log3 = log3 - log3 3
log3 (sin 3x - sin x) = log3 [(17*sin 2x) \ 3]
теперь основания логарифмов одинаковые =>
решать выражения при логарифмах (приравнять их):
sin 3x - sin x) = [(17*sin 2x) \ 3]
3*(sin 3x - sin x) = 17*sin 2x
3*[(3sin x - 4sin^3 x) - sin x] = 17*(2sin x * cos x)
3*(2sin x - 4sin^3 x) = 34*sin x * cos x > (: ) на sin x =>
6 - 12sin^2 x = 34cos x
6 - 12*(1 - cos^2 x) = 34cos x
6 - 12 + 12cos^2 x - 34cos x = 0
12cos^2 x - 34cos x - 6 = 0 > (: ) на 2 и cos x = t
6t^2 - 17t - 3 = 0
дальше легко
объяснение: