Раскрываем знак модуля: 1) если х≥0, то | x| = x если y≥0, то | y| = y Уравнение принимает вид : (x+y-1)(x+y+1)=0 х+у-1=0 или х+у+1=0 у=-х+1 или у=-х-1 В первой четверти ( х≥0; у≥0) строим прямую у=-х+1, прямая у=-х-1 не проходит через первую четверть.
2)если х<0, то | x| =- x если y≥0, то | y| = y Уравнение принимает вид : (-x+y-1)(x+y+1)=0 -х+у-1=0 или х+у+1=0 у=х+1 или у=-х-1 Во второй четверти ( х<0; у≥0) строим две прямые у=х+1 или у=-х-1
3)если х<0, то | x| =- x если y<0, то | y| =- y Уравнение принимает вид : (-x+y-1)(x-y+1)=0 -х+у-1=0 или х-у+1=0 у=х+1 или у=х+1 В третьей четверти ( х<0; у<0) нет графика функции, так как прямая у=х+1 не расположена в 3 ей четверти
4) если х≥0, то | x| = x если y<0, то | y| =- y Уравнение принимает вид : (x+y-1)(x-y+1)=0 х+у-1=0 или х-у+1=0 у=-х+1 или у=х+1 В четвертой четверти ( х≥0; у<0) строим прямую у=-х+1, прямая у=x+1 не расположена в четвертой четверти. Тогда получится нужный график, см. рисунок
ответ: 27 чисел. С - сумма, п - произведение. Числа по порядку:10(с=1, п=0), 11(с=2, п=1), 12(с=3, п=2), 13(с=4, п=3), 14(с=5, п=4), 15(с=6, п=5), 16(с=7, п=6), 17(с=8,п=7), 18(с=9, п=8), 19(с=10, п=9), 20(с=2, п=0), 21(с=3, п=2), 22(с=4, п=4), 30(с=3, п=0), 31(с=4, п=3),40(с=4, п=0), 41(с=5, п=4), 50(с=5, п=0), 51(с=6, п=5), 60(с=6, п=0), 61(с=7, п=6), 70(с=7, п=о), 71(с=8,п=7), 80(с=8, п=0), 81(с=9, п=8), 90(с=9, п=0), 91(с=10, п=9). сумма их цифр ПРЕВОСХОДИТ их произведение. По условию же надо, чтобы сумма не превосходила (то есть была либо равна, либо была бы меньше их произведения).ответ: Таких чисел 70. Это почти все двойные, а именно: 22, 33, 44, 55, 66, 77, 88, 99 и также: с 23 по 29 включительно, с 32 по 39 включительно, с 42 по 49 включительно, с 52 по59 включительно, с 62 по 69 вкл., с 72 по 79 вкл., с 82 по 89 вкл. Итого: 70 двузначных чисел
2-7х>0
-7x>-2
x<2/7
6(у-1.5)-3.4>4у-2.4
6у-9-3,4>4у-2,4
6у-4у>12.4-2.4
2у>10
у>5