Формула работы А = P t Пусть первый рабочий,работая самостоятельно, может выполнить эту работу за х дней, а второй - за y дней. Тогда производительность первого рабочего Р1 = 1/х, а производительность второго рабочего Р2 = 1/ y, а их общая производительность при совместной работе равна Р = Р1 + Р2
А (1) P(1/дн.) t (дн.) I + II 1 1/4 4 I 1/3 1/х 1/3:1/х = х/3 II 2 /3 1/y 2 /3:1/y= 2y/3
Тогда 1/х + 1/y = 1/4 х/3 + 2y/3 = 10
х/3 + 2y/3 = 10 х + 2y = 10 3 х + 2y = 30 х = 30 - 2y
ответ: первый рабочий,работая самостоятельно, может выполнить эту работу за 12 дней, тогда второй - за 6 дней, или, первый рабочий, может выполнить эту работу за 5 дней, тогда второй - за 20 дней.
(1-sin^2 x)-3sinx-(cos^2 x - sin^2 x) - 4=0 1-sin^2 x - 3sinx - 1+sin^2 x + sin^2 x - 4= 0 sin^2 x - 3sinx - 4=0 можешь дальше через дискриминант, но здесь и формула a+b+c=0 подходит, поэтому sinx =-1; x=-(π/2)+2πn, n€Z; sinx=-4(нет корней) Уравнение имеет одно решение: x=-(π/2)+2πn, n€Z [-π;π] -π≤ -π/2 + 2πn≤π, n€Z нам необходимо, чтобы по середине остался линии ь n, тогда, во-первых надо избавиться от -π/2, значит к обеим частям прибавляем -π/2, т.е. получится: -π+π/2≤-π/2 + π/2 + 2πn≤π + π/2 -π/2≤2πn≤3π/2. во-вторых, избавимся от 2π, т.е. делим на 2π обе части, получается -1/4≤n≤3/4, n - это какие то целые числа, смотришь, какие целые цисла есть между -1/4 и 3/4, но надо подобрать так, чтобы принадлежало нашему промежутку есть два таких числа это 0 и 1, проверим, подставив в x=-(π/2)+2πn, n€Z Если n=0, то х=-π/2 €[-π/2;π], т.е. подходит Если n=1, то х=-5π/2 это не принадлежит, поэтому промежутку [-π/2;π] принадлежит х=-π/2 Думаю, не ошибся
x₁+x₂=-p
x₁*x₂=q
x₁+x₂=2
x₁*x₂=-35
x₁=-5
x₂=7