а ) укажите область допустимых значений уравнения. б) приведите рациональное уравнение к квадратному уравнению. с) найдите решение рационального уравнения.
По теореме Виета можно найти корни квадр. ур-ия.В 1-ом уравнении корни х=2 или х=4. Наибольший корень х=4. Во втором уравнении сначала надо разделить его на 2, получим такое же уравнение, как и в 1-ом примере.То есть наибольший корень(решение) х=4. В третьем равенстве, решениями будут числа (-2) или (-5).Большее из них х=-2. А меньшее х=-5. Корни также можно находить через дискриминант D=b^2-4ac. 1) D=36-4*8=36-32=4, x_1=(6-2)/2=2 , x_2=(6+2)/2=4 2) Аналогично 3) D=49-40=9, x_1=(-7-3)/2=-5, x_2=(-7+3)/2=-2
log_2(x^2+4x+3)=3 ОДЗ: x^2+4x+3>0
x^2+4x+3=2³ x^2+4x+3=0
x^2+4x+3=8 x₁+x₂=-4
x^2+4x-5=0 x₁*x₂=3
x₁+x₂=-4 x₁=-1; x₂=-3
x₁*x₂=-5 x∈(-∞;-3)∪(-1;+∞)
x₁=1
x₂=-5
2)
log_2(x^2-4x+2)=1 ОДЗ: x^2-4x+2>0
x^2-4x+2=2¹ x^2-4x+2=0
x^2-4x+2=2 D=-4²-4*1*2=8
x^2-4x=0 x₁=2+√2
x(x-4)=0 x₂=2-√2
x=0 или x∈(-∞;(2-√2))∪((2+√2;+∞)
x-4=0 => x=4
x₁=0
x₂=4
3)
log_18(x)=log_18(4)-9log_18(1) ОДЗ: x>0
log_18(x)=log_18(4/1⁹)
log_18(x)=log_18(4)
x=4
4)
log_27(x)=1/3 ОДЗ: x>0
x=27^1/3
x=∛(27)
x=3