x=8,y=2,z=2
Объяснение:
ну тут даже хз что сказать то
составим векторы
AM = {x,y-4,z-2}
BM = {x-4,y-3,z-2}
|AM|/|BM|=2
решаем это
sqrt(x^2+(y-4)^2+(z-2)^2)/sqrt((x-4)^2+(y-3)^2+(z-2)^2) = 2
отсюда имеем
x=4,y=4,z=0
x=4,y=4,z=4
x=6,y=0,z=2
x=8,y=2,z=2
составим уравнение прямой проходящей через две точки и сделаем это в параметрическом виде , получаем
x=4t
y=-t+4
z=2
тк z=2 то подходят нам координаты x=6,y=0,z=2 и x=8,y=2,z=2
подставим в систему с параметрами по очереди наши координаты
в результате получаем что x=8,y=2,z=2 -подходит
имеем точку M(8;2;2)
все это можно решить проще и я хз правильно ли решил это но все же прверь мб подходит
ответ: 286,5 см².
Объяснение:
Дано. ABCD - прямоугольная трапеция.
BD - диагональ является биссектриса острого угла.
найдите площадь трапеции, если боковые стороны равны 10 см и 20 см.
Решение.
Биссектриса в трапеции отсекает равнобедренный треугольник.
ВС=CD=20 см.
Проведем высоту СЕ. Из треугольника CED:
DE=√20²-10²=√400-100=√300 = 10√3 =17,3 см. Тогда
основание AD=AE+ED=20+17,3 = 37,3 см.
Площадь трапеции S=h(a+b)/2 = 10(20+37,3)/2=10*57,3/2=286,5 см².
Площадь трапеции равна 286,5 см².
15^27=15^27*(1) 15^28=15^27*(15) 15^29=15^27*(15*15)
15^27 за скобку
15^27(1+15+15*15)=15^27*241
15^27*241/241=15^27
делится