Простыми преобразованиями эту задачу не решить, будем использовать арифметику остатков.
1-ое свойство, которое понадобится
То есть мы спокойно можем заменить каждое слагаемое сравнимым с ним по модулю m. То есть каждое слагаемое в нашей сумме будем рассматривать отдельно.
2-ое свойство, которое нам понадобится:
То есть довольно аналогичная вещь в произведении
На нашем примере все увидим
Находим остатки по модулю 31
Рассматриваем первое слагаемое. Просто двойка не годится, нам нужно найти ближайшее к 31 число, превосходящее его (иногда там в отрицательные числа залезаем, например, , но сейчас это не нужно), нам повезло, это 32
Учитываем, что , получаем
То есть остаток от деления первого слагаемое на 31 получился равным 10. Прекрасно, аналогично со вторым
Остаток 21, чудесно. Выполняем последний шаг.
То есть остаток от деления исходного числа на 31 равен 0, следовательно, исходное число делится на 31, что и требовалось доказать.
Чтобы найти ОДЗ, нужно выписать выражения с переменной на которую могут быть запреты. Например, 1/х. ОДЗ: все числа, кроме ноля, так как делить на ноль нельзя. Что касается условия. На основания 0,6 и 1 2/3 запретов нет, как и на показатели степеней. Но есть условия для логарифмов. Во-первых, основания должно быть больше ноля (10>0), во-вторых, число под знаком логарифма должно быть положительным. То есть х^2>0 и -х>0. Число в квадрате всегда больше ноля, тогда решим второе: -х>0. Получается, что х<0. Поэтому ОДЗ: х<0.
Объяснение:
Решение на фотографии