1+sinx·√(2ctgx) ≤ 0
Подкоренное выражение не может быть отрицательным
ctg x ≥ 0 0.5π ≥ x > 0 это в 1-й четверти
1.5π ≥ x > π это в 3-й четверти
в 1-й четверти sinx > 0 и выражение 1+sinx·√(2ctgx)> 0
в 3-й четверти sinx < 0 и выражение 1+sinx·√(2ctgx)может стать меньше 0, если
sinx·√(2ctgx) ≤ -1
делим на отрицательный синус
√(2ctgx) ≥ -1/sinx
обе части положительны
возводим в квадрат
2ctgx ≥ 1/sin²x
2ctgx ≥ 1 + ctg²x
1 + ctg²x - 2ctgx ≤ 0
(1 - ctgx)² ≤ 0
Квадрат любого числа не может быть отрицательным, поэтому остаётся только
равенство нулю:
1 - ctgx = 0
ctgx = 1 (четверть 3-я!)
х = 5/4π
Решение единственное: при х = 5/4π выражение 1+sinx·√(2ctgx) = 0
ну, и, разумеется следует добавить 2πn, тогда решение такое:
х = 5/4π +2πn
В решении.
Объяснение:
1)Является ли вид одночлена 36аb^2*ac*3*e^3 стандартным? ответ обоснуйте. В случае, если вид не стандартный, приведите одночлен к стандартному виду.
Одночленом называется выражение, которое содержит числа, натуральные степени переменных и их произведения, и при этом не содержит никаких других действий с этими числами и переменными.
Одночлен называется представленным в стандартном виде , если он представлен в виде произведения числового множителя на первом месте и степеней различных переменных. Числовой множитель у одночлена стандартного вида называется коэффициентом одночлена, сумму показателей степени переменных называют степенью одночлена.
36аb²*ac*3*e³; 108а²b²ce³ - станд. вид.
2)Для одночлена 6x²*y³*0,5z укажите коэффициент и степень.
3x²y³z - станд. вид; коэф. 3; степень 2+3+1=6.
3)Среди выражений выберите одночлены, перечислите их: 4xy; -0,5x²y; 64; x+8; 0; a/7; 1-x; 7/x; 0,2x*4y; (-2y)/8. Свой ответ обоснуйте.
К одночленам относятся числа, переменные, а также их степени с натуральным показателем и разные виды произведений, составленные из них.
4)Для одночлена abc укажите коэффициент и степень. Коэф. 1 , степень 1+1+1=3.
5) Верно ли утверждение, что степень одночлена - это самая большая степень его переменной? ответ обоснуйте .
Нет, не верно. Сумму показателей степени переменных называют степенью одночлена.