Объяснение:
1) y^11/y^7=y^(11-7)=y^4
2)b^9/b^9=b&0=1
Объяснение:
№8
Дано:
АН – высота;
ВН=4 дм;
НС=16 дм;
АВ=DC.
Проведём высоту DF к стороне ВС.
Рассмотрим прямоугольные треугольники АНВ и DFC.
АВ=DC по условию;
Так как основания трапеции паралельны, а АН и DF высоты, проведенные к основанию ВС, то АDFH прямоугольник. Следовательно АН и DF равны.
Тогда прямоугольные треугольники АНВ и DFC равны по гипотенузе и катету. Следовательно FC=BH=4;
HF=HC–FC=16–4=12 (дм).
Так как АDFH – прямоугольник (доказано ранее), то AD=HF=12 (дм)
ответ: Б) 12 дм.
№9
Рассмотрим треугольник АВН.
Так как АН – высота (по условию), то угол АНВ=90, тогда треугольник АВН прямоугольный.
Сумма углов при одной его стороне равна 180°, тогда:
угол ABH= 180°– угол BAD=180°–150°=30°
В прямоугольном треугольнике напротив угла в 30° лежит катет вдвое меньший гипотенузы, тоесть:
АН=АВ÷2=10÷2=5 см.
S=ah, где S–площадь паралелограмма, а– сторона паралелограмма, h– высота паралелограмма.
Подставим значения:
S=15*5=75 см²
ответ: В) 75 см²
Будем считать, что задана парабола y = ax² + bx + 7.
Решение упрощается тем, что задана ось параболы х = -4.
Поэтому можно увязать зависимость а и b по формуле вершины параболы х0 = -b/2a.
Так как вершина параболы лежит на её оси, то её абсцисса равна -4.
-4 = -b/2a,
-8a = -b,
b = 8a.
Заданная точка А находится между её осью и осью Оу.
Кроме того, точка пересечения оси Оу находится ниже точки А, поэтому заданная парабола имеет ветви, направленные вниз и коэффициент а имеет знак минус.
Получаем уравнение с одной переменной.
Подставляем координаты точки А.
19 = -a*(-2)² - 8a*(-2) + 7.
-4a + 16a = 19 - 7,
12a = 12,
a = 12/12 = 1.
ответ: уравнение параболы y = -x² - 8x + 7.
Объяснение:
1) y¹¹/y⁷=y¹¹⁻⁷=y⁴ при у≠0
(
, если а≠0, m>n)
2) b⁹/b⁹=b⁹⁻⁹=b⁰=1 при b≠0
(любое число, кроме 0, в нулевой степени равно единице, если а≠0, то а⁰=1)