На первом витке окружности расставлены точки 0; π/2; π; 3π/2 Точка (-√2/2; √2/2) во второй четверти, Ей соответствует значение 3π/4 На втором витке окружности расставлены точки 2π; 5π/2; 3π; 7π/2 Точка (-√2/2; √2/2) во второй четверти, Ей соответствует значение 3π/4 + 2π=11π/4 На третьем витке окружности расставлены точки 4π; 9π/2; 5π; 11π/2 Точка (-√2/2; √2/2) во второй четверти, Ей соответствует значение 11π/4+2π=19π/4 На [0; 5π] точке М соответствуют значения 3π/4 ; 11π/4 ; 19π/4 На [π/2 ; 9π/2] точке М соответствуют значения 3π/4 ; 11π/4
На единичной окружности имеется точка абсцисса которой π/4≈3/4<1 Отмечаем эту точку на оси ох и проводим прямую || оси оу до пересечения с окружностью Это точки А и В Отметим точку с ординатой π/4 на оси оу и проводим прямую || оси ох до пересечения с окружностью. Получим точки К и Е
√17-√26 сравним с -1 Пусть √17-√26 > -1 √17 + 1 > √26 17 + 2√17 + 1 >26 2√17>8 4·17 > 64 - верно Значит точка существует Ей соответствуют на ед окружности точки Р и Т
sin²x + sinx·cosx - 2cos²x = 0 /: cos²x
tg ²x + tg x - 2 = 0, по теореме обратной теореме Виета имеем:
tgx1 + tg x2 = - 1, tgx1·tgx2 = - 2
tg(x1+x2) = tgx1+ tg x2 _
1- tgx1·tg x2
12tg(x1+x2) = 12 ·(-1)_ = - 12 : 3 = - 4
1- (-2)