М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
10154
10154
15.03.2023 17:32 •  Алгебра

1) Докажи, что четырёхугольник ABCD является прямоугольником, найди его площадь, если A(15;2), B(17;6), C(13;8) и D(11;4).

SABCD=

2)Дан треугольник ABC и координаты вершин этого треугольника. Определи длины сторон треугольника и укажи вид этого треугольника.

A(8;−1), B(5;−5) и C(2;−1).

AB =
;

BC =
;

AC =
.

Треугольник ABC

.равнобедренный
.разносторонний
.равносторонний
3)
Точка A находится на положительной полуоси Ox, точка B находится на положительной полуоси Oy.
Нарисуй прямоугольник AOBC и диагонали прямоугольника. Определи координаты вершин прямоугольника и точки D пересечения диагоналей, если длина стороны OA равна 16,9, а длина стороны OB равна 2,5.

A ( ; );

O ( ; );

B ( ; );

C ( ; );

D ( ;).

👇
Ответ:
Катя881118
Катя881118
15.03.2023

1)  Четырёхугольник ABCD является параллелограммом, если его противоположные стороны попарно равны, то есть AB=CD , BC=AD.  

Если у параллелограмма равны диагонали, то этот параллелограмм является прямоугольником, то есть АС=BD .

Проверим это.

A(15;2)\ ,\ B(17;6)\ ,\ C(13;8)\ ,\ D(11;4)\\\\AB=\sqrt{(17-15)^2+(6-2)^2}=\sqrt{4+16}=\sqrt{20}\\\\CD=\sqrt{(11-13)^2+(4-8)^2}=\sqrt{16+4}=\sqrt{20}\\\\AB=CD\\\\BC=\sqrt{(13-17)^2+(8-6)^2}=\sqrt{16+4}=\sqrt{20}\\\\AD=\sqrt{(11-15)^2+(4-2)^2}=\sqrt{16+4}=\sqrt{20}\\\\BC=AD

Так как мы получили, что не только противоположные стороны попарно равны , но равны все стороны четырёхугольника , то этот четырёхугольник - параллелограмм, являющийся либо ромбом, либо квадратом.

AC=\sqrt{(13-15)^2+(8-2)^2}=\sqrt{4+36}=\sqrt{40}\\\\BD=\sqrt{(11-17)^2+(4-6)^2}=\sqrt{36+4}=\sqrt{40}\\\\AC=BD

Равны диагонали . Значит АВСD - прямоугольник .

2)\ \ A(8;-1)\ ,\ B(5;-5)\ ,\ C(2;-1)\\\\AB=\sqrt{(5-8)^2+(-5+1)^2}=\sqrt{9+16}=\sqrt{25}=5\\\\BC=\sqrt{(2-5)^2+(-1+5)^2}=\sqrt{9+16}=\sqrt{25}=5\\\\AC=\sqrt{(2-8)^2+(-1+1)^2}=\sqrt{36+0}=\sqrt{36}=6

Так как две стороны треугольника равны, то треугольник равнобедренный .

3)\ \ A(\, 16,9\ ;\ 0)\ ,\ \ B(\ 0\ ;\ 2,5\. )\ ,\ \ O(\, 0\, ;\, 0\, )\ ,\ \ D(\, 16,9\ ;\ 2,5\, )

Координаты точки пересечения диагоналей можно найти как координаты середины отрезка АВ ( или ОС ), так как диагонали прямоугольника в точке пересечения делятся пополам .

x_{D}=\dfrac{x_{A}+x_{B}}{2}=\dfrac{16,9+0}{2}=8,45\\\\y_{D}=\dfrac{y_{A}+y_{B}}{2}=\dfrac{0+2,5}{2}=1,25\ \ ,\ \ \ \ \ \ \ \ \ D(\ 8,45\ ;\ 1,25\ )


1) Докажи, что четырёхугольник ABCD является прямоугольником, найди его площадь, если A(15;2), B(17;
4,4(100 оценок)
Открыть все ответы
Ответ:
evegn1331
evegn1331
15.03.2023

ответ:

log3 = 2*log9 - 1

log3 = 2 * log(3^2) - log3 3

log3 = 2 * 1\2 * log3 - log3 3

log3 = log3 - log3 3

log3 (sin 3x - sin x) = log3 [(17*sin 2x) \ 3]

теперь основания логарифмов одинаковые =>

решать выражения при логарифмах (приравнять их):

sin 3x - sin x) = [(17*sin 2x) \ 3]

3*(sin 3x - sin x) = 17*sin 2x

3*[(3sin x - 4sin^3 x) - sin x] = 17*(2sin x * cos x)

3*(2sin x - 4sin^3 x) = 34*sin x * cos x > (: ) на sin x     =>

6 - 12sin^2 x = 34cos x

6 - 12*(1 - cos^2 x) = 34cos x

6 - 12 + 12cos^2 x - 34cos x = 0

12cos^2 x - 34cos x - 6 = 0 > (: ) на 2   и   cos x = t

6t^2 - 17t - 3 = 0

дальше легко

объяснение:

4,5(78 оценок)
Ответ:
kristinakomaro5
kristinakomaro5
15.03.2023

Давайте скорость первого будет у нас Х.

тогда скорость второго в первой половине пути была, значит, Х-12. Правильно я понял слова "... со скоростью меньшей первой на 12"?

Если да, то пишем дальше:

Время, потраченное вторым на весь путь состоит з двух кусков:

полпути / (Х-12) и полпути / 72

приравняем ко времени первого:

путь / Х = полпути / (Х-12) + полпути / 72

Давайте уберем путь из уравнения, для этого поделим обе стороны его на полпути:

2/Х = 1/(Х-12) + 1 / 72

2/Х -1/(Х-12) = 1 / 72

(2(Х-12)-Х)/Х(Х-12) = 1/72

(Х-24)/(Х^2-12Х) = 1/72

Х-24 = Х^2/72-Х/6

Х^2/72 - 7Х/6 + 24 = 0
Ликвидируем дроби (умножим все на 72)
Х^2 - 84Х + 1728 = 0

Решаем и видим, что
у этого уравнения два корня: 48 и 36.

Автор задачи слезно просил выбрать то, что более 45.
Уважим же его, не обижать же - он старался, небось!))

Скороость 1-го грузовичка была 48 км в час! Еле полз, бедняга!)

 

 

 

 

4,4(55 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ