Возьмем за x- скорость 2 туриста. Тогда скорость первого будет x+2. Напишем время, за которое они добрались. время первого 40/(х+2) время второго 40/х Из условия ясно, что первый доехал быстрее, чем второй, значит мы можем записать уравнение:
- = 1 приводим к общему знаменателю:
= 1 Заметим, что x не равен 0, икс не равен -2. По свойству пропорций мы приходим к такому уравнению: 80=x^2+2x x^2+2x-80=0 По формуле четного корня находим дискриминант: D=p^2-ac=1+80=81; Корень из D=9 x1=-1-9=-10 (скорость не может быть отрицательной, поэтому посторонний корень) x2=-1+9=8 Итак, скорость второго туриста 8+2=10. ответ: скорость первого туриста 10 км/ч; скорость второго туриста 8км/ч
ответ. В каждом размере либо левых и правых поровну, либо каких-то больше. Если левых и правых поровну, то их по 50 – вот мы и нашли 50 годных пар. Пусть в каждом размере или левых или правых больше. Можно считать, что в двух размерах больше левых, а в еще одном больше правых. (Во всех трех размерах левых быть больше не может, так как всего левых и правых сапог поровну). Введем обозначения, пусть в первых двух размерах правых A и B, а левых тогда 100-A и 100-B. В третьем размере левых C, а правых 100-С. Так как в первых двух размерах правых меньше, то там можно найти соответственно A и B пар, а в третьем размере левых меньше, значит там C годных пар. Мы еще не воспользовались условием, что всего 150 правых сапог. Это условие означает, что A+B+(100-C)=150, Откуда A+B=50+C50. Значит, всего пар годных сапог будет A+B+CA+B50.
Напишем время, за которое они добрались.
время первого 40/(х+2)
время второго 40/х
Из условия ясно, что первый доехал быстрее, чем второй, значит мы можем записать уравнение:
приводим к общему знаменателю:
Заметим, что x не равен 0, икс не равен -2.
По свойству пропорций мы приходим к такому уравнению:
80=x^2+2x
x^2+2x-80=0
По формуле четного корня находим дискриминант:
D=p^2-ac=1+80=81; Корень из D=9
x1=-1-9=-10 (скорость не может быть отрицательной, поэтому посторонний корень)
x2=-1+9=8
Итак, скорость второго туриста 8+2=10.
ответ: скорость первого туриста 10 км/ч; скорость второго туриста 8км/ч