Пусть скорость третьего атомобиля равна х км\час, за час первый автомобиль км, второй разница скоростей третьего и первого автомобиля равна (x-80) км\час, третий автомобиль догнал первый за 80/(x-80) час. За время от начала движения второй автомобиль проехал (80/(x-80)+1)*100=8000/(x-80)+100 км, расстояние от второго автомобиля до третьего равно 8000/(x-80)+100 -80/(x-80)*x км, разница скоростей третьего и второго автомобилей равна (х-100) км\час, по условию задачи третйи автомобиль догонит третий за (составляем уравненение)
(8000/(x-80)+100 -80х/(x-80)) :(x-100)=3
8000+100(х-80)-80х=3(x-80)(x-100)
8000+100x-8000-80x=3(x^2-180x+8000)
20x=3x^2-540x+24000
3x^2-560x+24000=0
D=25 600=160^2
x1=(560-160)/(2*3)<80 - не подходит условию задачи (скорость третьего автомобиля не может быть меньшей за скорость второго , меньшей за скорость первого)
x2=(560+160)/(2*3)=120
х=120
ответ:120 км\час
отметь как лучшее
2. Увеличиваем числительно на 1, а знаменатель на 5:
Числитель - (х)+1 = х+1
Знаменатель - (х+3)+5 = х+8
3. Полученная дробь меньше первой на 1/6.
Значит, (х)/(х+3)=(х+1)/(х+8)-1/6
(х)/(х+3)-(х+1)/(х+8)+1/6=0
Приведём дроби к общему знаменателю 6*(х+3)*(х+8):
( (х)*6*(х+8) ) - ( (х+1)*6*(х+3) ) + ( (х+3)*(х+8) ) разделить на 6*(х+3)*(х+8) равно нулю
6х^2+48х-6х^2-24х-18+х^2+11х+24 разделить на 6*(х+3)*(х+8) равно нулю
(х^2+35х+6)/(6*(х+3)*(х+8))= 0
Если дробь равна нулю, то числитель равен нулю, а знаменатель не равен нулю:
х^2+35х+6=0, при условии, что 6*(х+3)*(х+8) не равно нулю
Решаем квадратное уравнение: Д=35^2-4*6= 1225-24=1201
Х1=(-35- корень из 1201)/2
Х2=(-35+корень из 1201)/2 при условии, что х не равно -3 и -8
ОТВЕТ:
1) Числитель: (-35- корень из 1201)/2
Знаменатель: (-35- корень из 1201)/2 + 3
2) Числитель: (-35+корень из 1201)/2
Знаменатель: (-35+корень из 1201)/2 +3