Решение системы уравнений (5; 8)
Объяснение:
Решить систему уравнений методом сложения:
(х+3)/2 - (у-2)/3 =2
(х-1)/4 + (у+1)/3 =4
Умножить первое уравнение на 6, второе на 12, чтобы избавиться от дроби:
3(х+3)-2(у-2)=12
3(х-1)+4(у+1)=48
Раскрыть скобки:
3х+9-2у+4=12
3х-3+4у+4=48
Привести подобные члены:
3х-2у= -1
3х+4у=47
Умножить первое уравнение на -1, чтобы применить метод сложения:
-3х+2у=1
3х+4у=47
Складываем уравнения:
-3х+3х+2у+4у=1+47
6у=48
у=8
Теперь подставляем значение у в любое из двух уравнений системы и вычисляем х:
3х-2у= -1
3х= -1+2у
3х= -1+2*8
3х=15
х=5
Решение системы уравнений (5; 8)
короче, sinа = корень из 1-cos^2а = корень из 1 - 16/25=корень из 9/25= 3/5 (тут важно знать, к какой четверти принадлежит угол. внимательно задание читай, если от 3п/2 до 2п - то будет -3/5, если от 0 до п/2, то +3/5, если от п/2 до п, то +3/5, если от п до 3п/2, то -3/5
sin2а = 2sinacosa = 2*3/5*4/5=0,96 (или МИНУС 0,96, в зависимости от предыдущего действия, с каким знаком получился синус)