1)=8а²(в²-9с²)=8а²(в-3с)(в+3с).
2)=2(х²-12ху+36у²)=2(х-6у)².
3)=-2а(4а4-4а²+1)= -2а(2а²-1)².
4)=5(а³-8в6)=5(а³-(2в²)³)=5(а-2в²)(а²+2ав²+4в4)
5)=(а³+а²)-(ав-а²в)=а²(а+1)-ав(1+а)=(а+1)(а²-ав)=а(а+1)(а-в)
6)=с4(а-1)-с²(а-1)=(а-1)(с4-с²)=с²(а-1)(с²-1)=с²(а-1)(с-1)(с+1).
1)=(х-у)²-7²=(х-у-7)(х-у+7)
2)=а²-(3в-с)²=(а+3в-с)(а-3в+с)
3)=(в³)²-(2в²-3)²=(в³+2в²-3)(в³-2в²+3).
4)=(m³+3³n³)+(m+3n)²=(m+3n)(m²-3mn+9n²)+(m+3n)²=(m+3n)(m²-3mn+9n²+m+3n).
5)=x²-y²+2x+4y-3=(x²+2x+1)-(y²-4y+4)=(x+1)²-(y-2)²=(x+y-1)(x-y+3).
В декартовой системе координат графики обоих функций - это параболы, повернутые относительно оси, проходящей через начало координат на угол 90 градосов по часовой стрелке. Но ведь в принципе нам нужна площадь фигуры, поэтому мы можем без проблем поменять местами х и у и у нас получатся более понятные функции:
y=2x^2+5x+14
y=x^2-2x+4
Если Вы вспомните геометрический смысл определенного интеграла - то, надеюсь догадаетесь как это решать. Загляните в учебник и вспомните.
1. Найдем точки пересечения графиков функций. Для этого приравняем обе функции друг к другу:
2x^2+5x+14 = x^2-2x+4
У Вас получилось квадратное уравнение. Решив его Вы найдете абсциссы обоих точек пересечения графиков этих функций: x = a и x = b.
Дальше Вам надо вычислить интеграл по х от а до b от функции 2x^2+5x+14 и вычесть из него интеграл по х от а до b от функции x^2-2x+4. (Если построите график этих функций то поймете, почему надо вычитать именно из 2x^2+5x+14 а не наоборот).
Получите величину площади.