М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
vysochina67
vysochina67
29.11.2022 04:13 •  Алгебра

Представьте в виде степени с основанием X выражение
x⁴ x³​

👇
Ответ:
mo14yn
mo14yn
29.11.2022

При умножении степени складываются

Х⁷

4,4(76 оценок)
Ответ:
kiscaki
kiscaki
29.11.2022

x⁷

Объяснение:

x⁴x³ = x⁴ * x³ = x⁴⁺³ = x⁷

4,4(55 оценок)
Открыть все ответы
Ответ:
issirisoyf2q6
issirisoyf2q6
29.11.2022
Пусть вес самого 1-го сплава =   х кг, а процентное содержание в нём серебра = у%.определим ,сколько кг серебра было в 1-ом сплаве:         .2-ой сплав.   вес его равен (х+3) кг.       серебра в нём будет     , что составляет 90% серебра от веса всего сплава, так как по условию мы получим сплав 900 пробы ( 900 проба серебра значит, что сплав содержит 900 г  серебра на 1000 г от всего веса, то есть 90%). то есть с другой стороны серебра во 2  сплаве будет     .получим первое уравнение системы: 3 сплав.   вес всего сплава равен (х+2) кг.  так как добавляли 2 кг серебра 900 пробы, то вес серебра в этих 2 кг будет равен     кг .  а вес серебра во всём 3-ем сплаве равен   .с другой стороны 3-ий сплав будет иметь 840-ую пробу, то есть содержание серебра в 3-ем сплаве равно 84% от веса всего сплава, то есть равно     кг .получим второе уравнение системы: решим   систему уравнений.получили, что вес первоначального сплава равен 3 кг.этот сплав 80-типроцентный, то есть получили 800-ую пробу сплава,что соответствует частям серебра в трёхгилограммовом сплаве  . 
4,4(74 оценок)
Ответ:
Dasha20061104
Dasha20061104
29.11.2022

Гру́ппа в математике — множество, на котором определена ассоциативная бинарная операция, причём для этой операции имеется нейтральный элемент (аналог единицы для умножения), и каждый элемент множества имеет обратный. Ветвь общей алгебры, занимающаяся группами, называется теорией групп[1].

Один из примеров группы — множество целых чисел, снабжённое операцией сложения: сумма любых двух целых чисел также даёт целое число, роль нейтрального элемента играет ноль, а число с противоположным знаком является обратным элементом. Другие примеры — множество вещественных чисел с операцией сложения, множество вращений плоскости вокруг начала координат. Благодаря абстрактному определению группы через систему аксиом, не привязанной к специфике образующих множеств, в теории групп создан универсальный аппарат для изучения широкого класса математических объектов самого разнообразного происхождения с точки зрения общих свойств их структуры. Вездесущность групп в математике и за её пределами делает их важнейшей конструкцией в современной математике и её приложениях.

Группа фундаментально родственна понятию симметрии и является важным инструментом в изучении всех её проявлений. Например, группа симметрии отражает свойства геометрического объекта: она состоит из множества преобразований, оставляющих объект неизменным, и операции комбинирования двух таких преобразований, следующих друг за другом. Такие группы симметрии, как точечные группы симметрии понять явление молекулярной симметрии в химии; группа Пуанкаре характеризует симметрию физического пространства-времени, а специальные унитарные группы применяются в стандартной модели физики элементарных частиц[2].

Понятие группы ввёл Эварист Галуа, изучая многочлены в 1830-е годы[3].

Современная теория групп является активным разделом математики[4]. Один из наиболее впечатляющих результатов достигнут в классификации простых конечных групп, которая была завершена в 1981 году: доказательство теоремы составляет десятки тысяч страниц сотен научных статей более ста авторов, опубликованных с 1955 года, но статьи продолжают появляться из-за обнаруживаемых пробелов в доказательстве[5]. С середины 1980-х годов значительное развитие получила геометрическая теория групп, изучающая конечно-порождённые группы как геометрические объекты.

4,5(50 оценок)
Это интересно:
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ