Решение.
Пусть первый кран работал (n − 1)d + 8 часов, тогда второй кран работал (n − 2)d + 8 часов, ..., n-й кран — 8 часов. Тогда
дробь, числитель — (n минус 1)d плюс 8, знаменатель — 8 = дробь, числитель — 5, знаменатель — 1 равносильно (n минус 1)d=32,
(n минус 1)d плюс 8 плюс (n минус 2)d плюс 8 плюс ... плюс 8=d умножить на дробь, числитель — (n минус 1)n, знаменатель — 2 плюс 8n=16n плюс 8n=24n.
Получаем, что для заполнения сосуда требуется 24n часов работы. Если все краны открываются одновременно, то для пополнения всего сосуда потребуется дробь, числитель — 24n, знаменатель — n =24 часа.
Объяснение:
2) 1) Обозначим стороны прямоугольника через х и у
2) Тогда периметр прямоугольника и его площадь равны:
2(х + у) = 146
х * у = 1260
3) Решаем систему уравнения с двумя неизвестными. В первом уравнении выразим у через х:
х + у = 146/2
у = 73 - х
4) Подставим у во второе уравнение:
х*(73 - х) = 1260
х² - 73х + 1260 = 0
5) Решаем полученное квадратное уравнение. Находим дискриминант:
D = 73² - 4*1260 = 289
√D = 17
x₁ = (73 + 17)/2 = 45
x₂ = (73 - 17)2 = 28
6) Находим значение у:
у = 73 - х = 73 - 45 = 28
у = 73 - 28 = 45
ответ: 28 см и 45 см
3) x^2-7x+q=0
-4-7*2+q=0
-11*2+q=0
q= -22
Объяснение: