нет
Объяснение:
2x² +2x +1 -7y² = 2007 ⇔ 2x²+2x -2006 = 7y² ( 1 )
так как левая часть равенства ( 1 ) - четное число , то и правая
часть кратна 2 ⇒ 7y² делится на 2 ⇒ y делится на 2 ⇒
y = 2k ; k∈Z , подставим в (1) вместо y число 2к :
2x²+2x -2006 =28k² ⇒ x²+x -14k² = 1003 или :
x(x+1) -14k² = 1003 ( 2 )
x и ( x +1 ) - 2 последовательных натуральных числа ⇒ одно
из них обязательно четно ⇒ x(x+1) - четно ⇒ x(x+1) -14k² - четно
, как разность двух четных чисел , но 1003 - нечетное число
⇒ равенство ( 2) невозможно ⇒ уравнение (1) не имеет
решений в целых числах
Объяснение:
номер 3:
3х²-6х+с=0
а) квадратное уравнение имеет дискриминант D=b²-4ac. Если:
D>0, то уравнение имеет 2 корня (х1,2=(-b±√D)/(2a))D<0, то уравнение не имеет корнейD=0, то уравнение имеет 2 одинаковых корня (х=-b/(2a)) (необходимый нам случай)Находим дискриминант:
D=(-6)*(-6)-4*3*c=0
36-12c=0
12c=36
c=36/12
c=3
б) х=(-(-6))/(2*3)
х=6/6
х=1
номер 4:
согласно теореме Виета уравнение вида х²+рх+q=0 имеет корни х1 и х2, которые обладают следующими свойствами:
х1+х2=-р,х1*х2=qв данном случае уравнение: х²-16х+63=0, то есть p=-16, q=63, тогда:
а) х1+х2=-(-16)=16, х1*х2=63
б) 1/х1 + 1/х2 = (х2+х1)/(х1*х2)=16/63
номер 5:
х²-6х+8
а) х²-6х+8=
= х*х -2*х*3 + (3*3 - 3*3) + 8=
=(х-3)² - 9 + 8 = (х-3)² - 1
б) у(х) = х² - 6х + 8
у(х)=0, тогда
D=(-6)*(-6)-4*1*8=36-32=4=2²
x1=(-(-6)+2)/(2*1)=(6+2)/2=8/2=4
x2=(-(-6)-2)/(2*1)=(6-2)/2=4/2=2
следовательно,
х² - 6х + 8 = (х - 4) * (х - 2)